Exploiting Symmetry Reduces the Cost of Training QAOA

A promising approach to the practical application of the quantum approximate optimization algorithm (QAOA) is finding QAOA parameters classically in simulation and sampling the solutions from QAOA with optimized parameters on a quantum computer. Doing so requires repeated evaluations of QAOA energy in simulation. In this article, we propose a novel approach for accelerating the […]

Variational Learning for Quantum Artificial Neural Networks

In the past few years, quantum computing and machine learning fostered rapid developments in their respective areas of application, introducing new perspectives on how information processing systems can be realized and programmed. The rapidly growing field of quantum machine learning aims at bringing together these two ongoing revolutions. Here, we first review a series of […]

On the Stochastic Analysis of a Quantum Entanglement Distribution Switch

In this article, we study a quantum entanglement distribution switch that serves k users in a star topology. We model variants of the system as continuous-time Markov chains and obtain expressions for switch capacity, expected number of qubits stored in memory at the switch, and the quantum memory occupancy distribution. We obtain a number of analytic results […]

Distributed Quantum Computing and Network Control for Accelerated VQE

Interconnecting small quantum computers will be essential in the future for creating large-scale, robust quantum computers. Methods for distributing monolithic quantum algorithms efficiently are, thus, needed. In this article, we consider an approach for distributing the accelerated variational quantum eigensolver algorithm over arbitrary sized—in terms of number of qubits—distributed quantum computers. We consider approaches for […]

Quantum Bloom Filter and Its Applications

A quantum Bloom filter is a spatially more efficient data structure which is used to represent a set of n elements by using O(lognk) qubits. In this article, we define and design a quantum Bloom filter and its corresponding algorithms. Due to the reversibility of quantum operators, it can not only add a new element to a quantum Bloom […]

Compiler Design for Distributed Quantum Computing

In distributed quantum computing architectures, with the network and communications functionalities provided by the Quantum Internet, remote quantum processing units can communicate and cooperate for executing computational tasks that single, noisy, intermediate-scale quantum devices cannot handle by themselves. To this aim, distributed quantum computing requires a new generation of quantum compilers, for mapping any quantum […]

Benchmarking Hamiltonian Noise in the D-Wave Quantum Annealer

Various sources of noise limit the performance of quantum computers by altering qubit states in an uncontrolled manner throughout computations and reducing their coherence time. In quantum annealers, this noise introduces additional fluctuations to the parameters defining the original problem Hamiltonian, such that they find the ground states of problems perturbed from those originally programmed. […]

Josephson Microwave Sources Applied to Quantum Information Systems

Quantum computers with thousands or millions of qubits will require a scalable solution for qubit control and readout electronics. Colocating these electronics at millikelvin temperatures has been proposed and demonstrated, but there exist significant challenges with power dissipation, reproducibility, fidelity, and scalability. In this article, we experimentally demonstrate the use of a Josephson arbitrary waveform […]

Finding Small and Large k-Clique Instances on a Quantum Computer

Algorithms for triangle finding, the smallest nontrivial instance of the k -clique problem, have been proposed for quantum computers. Still, those algorithms assume the use of fixed access time quantum RAM. In this article, we present a practical gate-based approach to both the triangle-finding problem and its NP-hard k -clique generalization. We examine both constant factors for near-term implementation […]

High-Fidelity Control of Superconducting Qubits Using Direct Microwave Synthesis in Higher Nyquist Zones

Control electronics for superconducting quantum processors have strict requirements for accurate command of the sensitive quantum states of their qubits. Hinging on the purity of ultra-phase-stable oscillators to upconvert very-low-noise baseband pulses, conventional control systems can become prohibitively complex and expensive when scaling to larger quantum devices, especially as high sampling rates become desirable for […]