Novel Trade-offs in 5 nm FinFET SRAM Arrays at Extremely Low Temperatures

Complementary metal–oxide–semiconductor (CMOS)-based computing promises drastic improvement in performance at extremely low temperatures (e.g., 77 K, 10 K). The field of extremely low temperature CMOS-environment-based computing holds the promise of delivering remarkable enhancements in both performance and power consumption. Static random access memory (SRAM) plays a major role in determining the performance and efficiency of […]

Multidisk Clutch Optimization Using Quantum Annealing

In this article, we apply a quantum optimization algorithm to solve a combinatorial problem with significant practical relevance occurring in clutch manufacturing. It is demonstrated how quantum optimization can play a role in real industrial applications in the manufacturing sector. Using the quantum annealer provided by D-Wave Systems, we analyze the performance of the quantum […]

Noise Robustness of Quantum Relaxation for Combinatorial Optimization

Relaxation is a common way for dealing with combinatorial optimization problems. Quantum random-access optimization (QRAO) is a quantum-relaxation-based optimizer that uses fewer qubits than the number of bits in the original problem by encoding multiple variables per qubit using quantum random-access code (QRAC). Reducing the number of qubits will alleviate physical noise (typically, decoherence), and […]

Resource Placement for Rate and Fidelity Maximization in Quantum Networks

Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss. The first step toward enabling quantum networks is the integration of quantum repeaters into optical networks. However, the expenses and intrinsic noise inherent in quantum hardware underscore the need for an efficient deployment strategy that optimizes the placement […]

Resource Placement for Rate and Fidelity Maximization in Quantum Networks

Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss. The first step toward enabling quantum networks is the integration of quantum repeaters into optical networks. However, the expenses and intrinsic noise inherent in quantum hardware underscore the need for an efficient deployment strategy that optimizes the placement […]

Approximate Solutions of Combinatorial Problems via Quantum Relaxations

Combinatorial problems are formulated to find optimal designs within a fixed set of constraints and are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization remains an ongoing area of study. Here, we propose new methods for producing approximate solutions to quadratic unconstrained binary optimization problems, […]

On Quantum Natural Policy Gradients

This article delves into the role of the quantum Fisher information matrix (FIM) in enhancing the performance of parameterized quantum circuit (PQC)-based reinforcement learning agents. While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov decision processes, […]

MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach

In this article, we study the problem of digital pre/postcoding design in multiple-input multiple-output (MIMO) systems with 1-b resolution per complex dimension. The optimal solution that maximizes the received signal-to-noise ratio relies on an NP-hard combinatorial problem that requires exhaustive searching with exponential complexity. By using the principles of alternating optimization and quantum annealing (QA), […]

Distributionally Robust Variational Quantum Algorithms With Shifted Noise

Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is highly unstable and thus it is likely to shift in real time. This presents a critical […]