A Connection-Oriented Entanglement Distribution Design in Quantum Networks

Quantum networks create a completely new way for communication, and the most important function of a quantum network is to generate long-distance quantum entanglement to serve a number of quantum applications. As the scale of the network expands, in order to establish end-to-end entanglement between two remote nodes, entangled pairs need to be generated and […]

Efficient Quantum Network Communication Using Optimized Entanglement Swapping Trees

Quantum network communication is challenging, as the no-cloning theorem in the quantum regime makes many classical techniques inapplicable; in particular, the direct transmission of qubit states over long distances is infeasible due to unrecoverable errors. For the long-distance communication of unknown quantum states, the only viable communication approach (assuming local operations and classical communications) is […]

DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks

Quantum routing plays a key role in the development of the next-generation network system. In particular, an entangled routing path can be constructed with the help of quantum entanglement and swapping among particles (e.g., photons) associated with nodes in the network. From another side of computing, machine learning has achieved numerous breakthrough successes in various […]

Protocols for Packet Quantum Network Intercommunication

A quantum network, which involves multiple parties pinging each other with quantum messages, could revolutionize communication, computing, and basic sciences. The future internet will be a global system of various packet switching quantum and classical networks, and we call it quantum internet . To build a quantum Internet, unified protocols that support the distribution of […]

Attacking the Quantum Internet

The main service provided by the coming quantum Internet will be creating entanglement between any two quantum nodes. We discuss and classify attacks on quantum repeaters, which will serve roles similar to those of classical Internet routers. We have modeled the components for and structure of quantum repeater network nodes. With this model, we point […]

QuNetSim: A Software Framework for Quantum Networks

As quantum network technologies develop, the need for teaching and engineering tools such as simulators and emulators rises. QuNetSim addresses this need. QuNetSim is a Python software framework that delivers an easy-to-use interface for simulating quantum networks at the network layer, which can be extended at little effort of the user to implement the corresponding […]

Request Scheduling in Quantum Networks

Quantumnetworking is emerging as a new research area to explore the opportunities of interconnecting quantum systems through end-to-end entanglement of qubits at geographical distance via quantum repeaters. A promising architecture has been proposed in the literature that decouples entanglement between adjacent quantum nodes/repeaters from establishing end-to-end paths by adopting a time slotted approach. Within this […]

An Engineer’s Brief Introduction to Microwave Quantum Optics and a Single-Port State-Space Representation

Classical microwave circuit theory is incapable of representing some phenomena at the quantum level. To include quantum statistical effects, various theoretical treatments can be employed. Quantum input-output network (QION) theory is one such treatment. Another formalism, called SLH theory, incorporates scattering matrices ( S ), coupling vectors ( L ), and system Hamiltonians ( H […]