Improving Probabilistic Error Cancellation in the Presence of Nonstationary Noise

In this article, we investigate the stability of probabilistic error cancellation (PEC) outcomes in the presence of nonstationary noise, which is an obstacle to achieving accurate observable estimates. Leveraging Bayesian methods, we design a strategy to enhance PEC stability and accuracy. Our experiments using a five-qubit implementation of the Bernstein–Vazirani algorithm and conducted on the […]

Fault-Tolerant One-Way Noiseless Amplification for Microwave Bosonic Quantum Information Processing

Microwave quantum information networks require reliable transmission of single-photon propagating modes over lossy channels. In this article, we propose a microwave noiseless linear amplifier (NLA) suitable to circumvent the losses incurred by a flying photon undergoing an amplitude damping channel (ADC). The proposed model is constructed by engineering a simple 1-D four-node cluster state. Contrary […]

Noise Robustness of Quantum Relaxation for Combinatorial Optimization

Relaxation is a common way for dealing with combinatorial optimization problems. Quantum random-access optimization (QRAO) is a quantum-relaxation-based optimizer that uses fewer qubits than the number of bits in the original problem by encoding multiple variables per qubit using quantum random-access code (QRAC). Reducing the number of qubits will alleviate physical noise (typically, decoherence), and […]

Resource Placement for Rate and Fidelity Maximization in Quantum Networks

Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss. The first step toward enabling quantum networks is the integration of quantum repeaters into optical networks. However, the expenses and intrinsic noise inherent in quantum hardware underscore the need for an efficient deployment strategy that optimizes the placement […]

Resource Placement for Rate and Fidelity Maximization in Quantum Networks

Existing classical optical network infrastructure cannot be immediately used for quantum network applications due to photon loss. The first step toward enabling quantum networks is the integration of quantum repeaters into optical networks. However, the expenses and intrinsic noise inherent in quantum hardware underscore the need for an efficient deployment strategy that optimizes the placement […]

BeSnake: A Routing Algorithm for Scalable Spin-Qubit Architectures

As quantum computing devices increase in size with respect to the number of qubits, two-qubit interactions become more challenging, necessitating innovative and scalable qubit routing solutions. In this work, we introduce beSnake, a novel algorithm specifically designed to address the intricate qubit routing challenges in scalable spin-qubit architectures. Unlike traditional methods in superconducting architectures that […]

Approximate Solutions of Combinatorial Problems via Quantum Relaxations

Combinatorial problems are formulated to find optimal designs within a fixed set of constraints and are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization remains an ongoing area of study. Here, we propose new methods for producing approximate solutions to quadratic unconstrained binary optimization problems, […]

Convolutional Neural Decoder for Surface Codes

To perform reliable information processing in quantum computers, quantum error correction (QEC) codes are essential for the detection and correction of errors in the qubits. Among QEC codes, topological QEC codes are designed to interact between the neighboring qubits, which is a promising property for easing the implementation requirements. In addition, the locality to the […]

Superconducting Through-Substrate Vias on Sapphire Substrates for Quantum Circuits

Sapphire substrates have recently been recognized for their potential to improve the coherence time of superconducting qubits. However, due to challenges in via fabrication, silicon substrates have been predominantly used for qubits. In this study, we fabricated vias on sapphire substrates using lasers and deposited TiN films by chemical vapor deposition. Cross-sectional views of the […]