Corrections to “The Present and Future of Discrete Logarithm Problems on Noisy Quantum Computers”

Presents corrections to the article “The Present and Future of Discrete Logarithm Problems on Noisy Quantum Computers”. For more about this article see link below. https://ieeexplore.ieee.org/document/10185464 For the open access PDF link of this article please click.

Quantum Algorithm for Position Weight Matrix Matching

In this article, we propose two quantum algorithms for a problem in bioinformatics, position weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence, such as DNA and protein that have high scores defined by the PWM and are, thus, of informational importance related to biological function. The two proposed […]

Qubit Reduction and Quantum Speedup for Wireless Channel Assignment Problem

In this article, we propose a novel method of formulating an NP-hard wireless channel assignment problem as a higher-order unconstrained binary optimization (HUBO), where the Grover adaptive search (GAS) is used to provide a quadratic speedup for solving the problem. The conventional method relies on a one-hot encoding of the channel indices, resulting in a […]

A Low-Complexity Quantum Simulation Framework for Toeplitz-Structured Matrix and Its Application in Signal Processing

Toeplitz matrix reconstruction algorithms (TMRAs) are one of the central subroutines in array processing for wireless communication applications. The classical TMRAs have shown excellent accuracy in the spectral estimation for both uncorrelated and coherence sources in the recent era. However, TMRAs incorporate the classical eigenvalue decomposition technique for estimating the eigenvalues of the Toeplitz-structured covariance […]

Extensible Gauge-Invariant FDM With Spin–Orbit Coupling for Quantum Devices

We present a novel derivation and implementation of the finite-difference method (FDM) that is gauge invariant and incorporates spin–orbit coupling for the study of quantum systems. This version of FDM is meant to assist in the design and simulation of quantum devices that utilize multiple internal degrees of freedom (e.g., spin) by providing a way […]

Enabling Efficient Real-Time Calibration on Cloud Quantum Machines

Noisy intermediate-scale quantum computers are widely used for quantum computing (QC) from quantum cloud providers. Among them, superconducting quantum computers, with their high scalability and mature processing technology based on traditional silicon-based chips, have become the preferred solution for most commercial companies and research institutions to develop QC. However, superconducting quantum computers suffer from fluctuation […]

Millimeter-Waves to Terahertz SISO and MIMO Continuous Variable Quantum Key Distribution

With the exponentially increased demands for large bandwidth, it is important to think about the best network platform as well as the security and privacy of the information in communication networks. Millimeter (mm)-waves and terahertz (THz) with high carrier frequencies are proposed as the enabling technologies to overcome Shannon’s channel capacity limit of existing communication […]

MIMO Terahertz Quantum Key Distribution Under Restricted Eavesdropping

Quantum key distribution (QKD) can provide unconditional security to next-generation communication networks guaranteed by the laws of quantum physics. This article studies the secret key rate (SKR) of a continuous variable QKD (CV-QKD) system using multiple-input multiple-output (MIMO) transmission and operating at terahertz (THz) frequencies. Distinct from previous works, we consider a practical “restricted” eavesdropping […]

Prediction of Solar Irradiance One Hour Ahead Based on Quantum Long Short-Term Memory Network

The short-term forecasting of photovoltaic (PV) power generation ensures the scheduling and dispatching of electrical power, helps design a PV-integrated energy management system, and enhances the security of grid operation. However, due to the randomness of solar energy, the output of the PV system will fluctuate, which will affect the safe operation of the grid. […]