Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks
Quanvolutional Neural Networks (QNNs) have been successful in image classification, exploiting inherent quantum capabilities to improve performance of the traditional convolution. Unfortunately, the qubit’s reliability can be a significant issue for QNNs inference, since its logical state can be altered by both intrinsic noise and by the interaction with natural radiation. In this paper we […]