Pauli Error Propagation-Based Gate Rescheduling for Quantum Circuit Error Mitigation

Noisy intermediate-scale quantum algorithms, which run on noisy quantum computers, should be carefully designed to boost the output state fidelity. While several compilation approaches have been proposed to minimize circuit errors, they often omit the detailed circuit structure information that does not affect the circuit depth or the gate count. In the presence of spatial […]

Simultaneous Execution of Quantum Circuits on Current and Near-Future NISQ Systems

In the noisy intermediate-scale quantum (NISQ) era, the idea of quantum multiprogramming , running multiple quantum circuits (QCs) simultaneously on the same hardware, helps to improve the throughput of quantum computation. However, the crosstalk, unwanted interference between qubits on NISQ processors, may cause performance degradation when using multiprogramming. To address this challenge, we introduce palloq […]

Depth Optimization of CZ, CNOT, and Clifford Circuits

We seek to develop better upper bound guarantees on the depth of quantum CZ gate, cnot gate, and Clifford circuits than those reported previously. We focus on the number of qubits n≤ 1 345 000 (de Brugière et al. , 2021), which represents the most practical use case. Our upper bound on the depth of CZ circuits is ⌊n/2+0.4993⋅log2(n)+3.0191⋅log(n)−10.9139⌋ , improving the best-known […]

A Software Development Kit and Translation Layer for Executing Intel 8080 Assembler on a Quantum Computer (August 2022)

One of the major obstacles to the adoption of quantum computing is the requirement to define quantum circuits at the quantum gate level. Many programmers are familiar with high-level or low-level programming languages but not quantum gates nor the low-level quantum logic required to derive useful results from quantum computers. The steep learning curve involved […]

A Low-Complexity Quantum Principal Component Analysis Algorithm

In this article, we propose a low-complexity quantum principal component analysis (qPCA) algorithm. Similar to the state-of-the-art qPCA, it achieves dimension reduction by extracting principal components of the data matrix, rather than all components of the data matrix, to quantum registers, so that the samples of measurement required can be reduced considerably. Both our qPCA […]

Grover on KATAN: Quantum Resource Estimation

This article presents the cost analysis of mounting Grover’s key search attack on the family of KATAN block cipher. Several designs of the reversible quantum circuit of KATAN are proposed. Owing to the National Insitute of Standards and Technology’s (NIST) proposal for postquantum cryptography standardization, the circuits are designed focusing on minimizing the overall depth. […]

Topological-Graph Dependencies and Scaling Properties of a Heuristic Qubit-Assignment Algorithm

The qubit-mapping problem aims to assign and route qubits of a quantum circuit onto an noisy intermediate-scale quantum (NISQ) device in an optimized fashion, with respect to some cost function. Finding an optimal solution to this problem is known to scale exponentially in computational complexity; as such, it is imperative to investigate scalable qubit-mapping solutions […]

QuantMark: A Benchmarking API for VQE Algorithms

Thanks to the rise of quantum computers, many variations of the variational quantum eigensolver (VQE) have been proposed in recent times. This is a promising development for real quantum algorithms, as the VQE is a promising algorithm that runs on current quantum hardware. However, the popular method of comparing your algorithm versus a classical baseline […]

A Distributed Learning Scheme for Variational Quantum Algorithms

Variational quantum algorithms (VQAs) are prime contenders to gain computational advantages over classical algorithms using near-term quantum machines. As such, many endeavors have been made to accelerate the optimization of modern VQAs in past years. To further improve the capability of VQAs, here, we propose a quantum distributed optimization scheme (dubbed as QUDIO), whose back […]

The Present and Future of Discrete Logarithm Problems on Noisy Quantum Computers

The discrete logarithm problem (DLP) is the basis for several cryptographic primitives. Since Shor’s work, it has been known that the DLP can be solved by combining a polynomial-size quantum circuit and a polynomial-time classical postprocessing algorithm. The theoretical result corresponds the situation where a quantum device working with a medium number of qubits of […]