Learning a Quantum Computer’s Capability

Accurately predicting a quantum computer’s capability—which circuits it can run and how well it can run them—is a foundational goal of quantum characterization and benchmarking. As modern quantum computers become increasingly hard to simulate, we must develop accurate and scalable predictive capability models to help researchers and stakeholders decide which quantum computers to build and […]

MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach

In this article, we study the problem of digital pre/postcoding design in multiple-input multiple-output (MIMO) systems with 1-b resolution per complex dimension. The optimal solution that maximizes the received signal-to-noise ratio relies on an NP-hard combinatorial problem that requires exhaustive searching with exponential complexity. By using the principles of alternating optimization and quantum annealing (QA), […]

MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach

In this article, we study the problem of digital pre/postcoding design in multiple-input multiple-output (MIMO) systems with 1-b resolution per complex dimension. The optimal solution that maximizes the received signal-to-noise ratio relies on an NP-hard combinatorial problem that requires exhaustive searching with exponential complexity. By using the principles of alternating optimization and quantum annealing (QA), […]

Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes

Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the […]

Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes

Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the […]

Application of Quantum Recurrent Neural Network in Low-Resource Language Text Classification

Text sentiment analysis is an important task in natural language processing and has always been a hot research topic. However, in low-resource regions such as South Asia, where languages like Bengali are widely used, the research interest is relatively low compared to high-resource regions due to limited computational resources, flexible word order, and high inflectional […]

Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning

Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general […]

Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning

Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general […]

MIMO Terahertz Quantum Key Distribution Under Restricted Eavesdropping

Quantum key distribution (QKD) can provide unconditional security to next-generation communication networks guaranteed by the laws of quantum physics. This article studies the secret key rate (SKR) of a continuous variable QKD (CV-QKD) system using multiple-input multiple-output (MIMO) transmission and operating at terahertz (THz) frequencies. Distinct from previous works, we consider a practical “restricted” eavesdropping […]

Perfect and Quasi-Perfect Codes for the Bosonic Classical-Quantum Channel

In this article, we explore perfect and quasi-perfect codes for the Bosonic channel, where information is generated by a laser and conveyed in the form of coherent states. In particular, we consider the phase-modulation codebook for coherent states in a Bosonic channel. We show that these phase-modulation codes are quasi-perfect as long as the cardinality […]