MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach

In this article, we study the problem of digital pre/postcoding design in multiple-input multiple-output (MIMO) systems with 1-b resolution per complex dimension. The optimal solution that maximizes the received signal-to-noise ratio relies on an NP-hard combinatorial problem that requires exhaustive searching with exponential complexity. By using the principles of alternating optimization and quantum annealing (QA), […]

Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes

Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the […]

Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning

Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general […]

MIMO Terahertz Quantum Key Distribution Under Restricted Eavesdropping

Quantum key distribution (QKD) can provide unconditional security to next-generation communication networks guaranteed by the laws of quantum physics. This article studies the secret key rate (SKR) of a continuous variable QKD (CV-QKD) system using multiple-input multiple-output (MIMO) transmission and operating at terahertz (THz) frequencies. Distinct from previous works, we consider a practical “restricted” eavesdropping […]

Perfect and Quasi-Perfect Codes for the Bosonic Classical-Quantum Channel

In this article, we explore perfect and quasi-perfect codes for the Bosonic channel, where information is generated by a laser and conveyed in the form of coherent states. In particular, we consider the phase-modulation codebook for coherent states in a Bosonic channel. We show that these phase-modulation codes are quasi-perfect as long as the cardinality […]

Fundamentals of Quantum Fourier Optics

All-quantum signal processing techniques are at the core of the successful advancement of most information-based quantum technologies. This article develops coherent and comprehensive methodologies and mathematical models to describe Fourier optical signal processing in full quantum terms for any input quantum state of light. We begin this article by introducing a spatially 2-D quantum state […]

On the Logical Error Rate of Sparse Quantum Codes

The quantum paradigm presents a phenomenon known as degeneracy that can potentially improve the performance of quantum error correcting codes. However, the effects of this mechanism are sometimes ignored when evaluating the performance of sparse quantum codes and the logical error rate is not always correctly reported. In this article, we discuss previously existing methods […]

A Feasible Quantum Sealed-Bid Auction Scheme Without an Auctioneer

In this article, we first define a primitive problem of secure multiparty computations, i.e., secure multiparty disjunction (SMD), and present a novel quantum protocol for SMD that can ensure information-theoretical security, i.e., unconditional security. Furthermore, based on the quantum SMD protocol, we design a quantum sealed-bid auction (QSA) scheme without an auctioneer. In the proposed […]

Discriminating Quantum States in the Presence of a Deutschian CTC: A Simulation Analysis

In an article published in 2009, Brun et al. proved that in the presence of a “Deutschian” closed timelike curve, one can map K distinct nonorthogonal states (hereafter, input set) to the standard orthonormal basis of a K -dimensional state space. To implement this result, the authors proposed a quantum circuit that includes, among SWAP gates, a fixed set […]

Hybrid Classical-Quantum Optimization Techniques for Solving Mixed-Integer Programming Problems in Production Scheduling

Quantum computing (QC) holds great promise to open up a new era of computing and has been receiving significant attention recently. To overcome the performance limitations of near-term QC, utilizing the current quantum computers to complement classical techniques for solving real-world problems is of utmost importance. In this article, we develop QC-based solution strategies that […]