Generalized Quantum-Assisted Digital Signature

This article introduces generalized quantum-assisted digital signature (GQaDS), an improved version of a recently proposed scheme whose information-theoretic security is inherited by adopting quantum key distribution keys for digital signature purposes. Its security against forging is computed considering a trial-and-error approach taken by the malicious forger, and GQaDS parameters are optimized via an analytical approach […]

Simulation of Shor Algorithm for Discrete Logarithm Problems With Comprehensive Pairs of Modulo p and Order q

Abstract: The discrete logarithm problem (DLP) over finite fields, commonly used in classical cryptography, has no known polynomial-time algorithm on classical computers. However, Shor has provided its polynomial-time algorithm on quantum computers. Nevertheless, there are only few examples simulating quantum circuits that operate on general pairs of modulo p and order q. In this article, […]

Three-Party Controlled Authentication Semiquantum Key Agreement Protocol for Online Joint Consultation

Abstract: In Wise Information Technology of Medicine, to ensure both confidentiality and integrity of the data created during online joint consultations, and to solve the problem that ordinary users cannot afford expensive quantum devices and are vulnerable to man-in-the-middle attacks during communication, this article proposes a three-party controlled authentication semiquantum key agreement protocol, leveraging the […]

Advance Sharing Procedures for the Ramp Quantum Secret Sharing Schemes With the Highest Coding Rate

Abstract: In some quantum secret sharing schemes, it is known that some shares can be distributed to participants before a secret is given to the dealer. However, it is unclear whether some shares can be distributed before a secret is given in the ramp quantum secret sharing schemes with the highest coding rate. This article […]

Learning a Quantum Computer’s Capability

Accurately predicting a quantum computer’s capability—which circuits it can run and how well it can run them—is a foundational goal of quantum characterization and benchmarking. As modern quantum computers become increasingly hard to simulate, we must develop accurate and scalable predictive capability models to help researchers and stakeholders decide which quantum computers to build and […]

MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach

In this article, we study the problem of digital pre/postcoding design in multiple-input multiple-output (MIMO) systems with 1-b resolution per complex dimension. The optimal solution that maximizes the received signal-to-noise ratio relies on an NP-hard combinatorial problem that requires exhaustive searching with exponential complexity. By using the principles of alternating optimization and quantum annealing (QA), […]

MIMO With 1-b Pre/Postcoding Resolution: A Quantum Annealing Approach

In this article, we study the problem of digital pre/postcoding design in multiple-input multiple-output (MIMO) systems with 1-b resolution per complex dimension. The optimal solution that maximizes the received signal-to-noise ratio relies on an NP-hard combinatorial problem that requires exhaustive searching with exponential complexity. By using the principles of alternating optimization and quantum annealing (QA), […]

Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes

Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the […]

Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes

Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the […]

Application of Quantum Recurrent Neural Network in Low-Resource Language Text Classification

Text sentiment analysis is an important task in natural language processing and has always been a hot research topic. However, in low-resource regions such as South Asia, where languages like Bengali are widely used, the research interest is relatively low compared to high-resource regions due to limited computational resources, flexible word order, and high inflectional […]