Testing and Debugging Quantum Circuits

This article introduces a process framework for debugging quantum circuits, focusing on three distinct types of circuit blocks: amplitude–permutation, phase-modulation, and amplitude–redistribution circuit blocks. Our research addresses the critical need for specialized debugging approaches tailored to the unique properties of each circuit type. For amplitude–permutation circuits, we propose techniques to correct amplitude–permutations mimicking classical operations. […]

Testing and Debugging Quantum Circuits

This article introduces a process framework for debugging quantum circuits, focusing on three distinct types of circuit blocks: amplitude–permutation, phase-modulation, and amplitude–redistribution circuit blocks. Our research addresses the critical need for specialized debugging approaches tailored to the unique properties of each circuit type. For amplitude–permutation circuits, we propose techniques to correct amplitude–permutations mimicking classical operations. […]

Perfect and Quasi-Perfect Codes for the Bosonic Classical-Quantum Channel

In this article, we explore perfect and quasi-perfect codes for the Bosonic channel, where information is generated by a laser and conveyed in the form of coherent states. In particular, we consider the phase-modulation codebook for coherent states in a Bosonic channel. We show that these phase-modulation codes are quasi-perfect as long as the cardinality […]