Request Scheduling in Quantum Networks

Quantumnetworking is emerging as a new research area to explore the opportunities of interconnecting quantum systems through end-to-end entanglement of qubits at geographical distance via quantum repeaters. A promising architecture has been proposed in the literature that decouples entanglement between adjacent quantum nodes/repeaters from establishing end-to-end paths by adopting a time slotted approach. Within this […]

Finding Small and Large k-Clique Instances on a Quantum Computer

Algorithms for triangle finding, the smallest nontrivial instance of the k -clique problem, have been proposed for quantum computers. Still, those algorithms assume the use of fixed access time quantum RAM. In this article, we present a practical gate-based approach to both the triangle-finding problem and its NP-hard k -clique generalization. We examine both constant factors for near-term implementation […]

Multiblock ADMM Heuristics for Mixed-Binary Optimization on Classical and Quantum Computers

Solving combinatorial optimization problems on current noisy quantum devices is currently being advocated for (and restricted to) binary polynomial optimization with equality constraints via quantum heuristic approaches. This is achieved using, for example, the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA). In this article, we present a decomposition-based approach to extend […]

Quantum Computing for Finance: State-of-the-Art and Future Prospects

This article outlines our point of view regarding the applicability, state-of-the-art, and potential of quantum computing for problems in finance. We provide an introduction to quantum computing as well as a survey on problem classes in finance that are computationally challenging classically and for which quantum computing algorithms are promising. In the main part, we […]