Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design

While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum […]

Testing Platform-Independent Quantum Error Mitigation on Noisy Quantum Computers

We apply quantum error mitigation (QEM) techniques to a variety of benchmark problems and quantum computers to evaluate the performance of QEM in practice. To do so, we define an empirically motivated, resource-normalized metric of the improvement of error mitigation, which we call the improvement factor, and calculate this metric for each experiment we perform. […]

Pauli Error Propagation-Based Gate Rescheduling for Quantum Circuit Error Mitigation

Noisy intermediate-scale quantum algorithms, which run on noisy quantum computers, should be carefully designed to boost the output state fidelity. While several compilation approaches have been proposed to minimize circuit errors, they often omit the detailed circuit structure information that does not affect the circuit depth or the gate count. In the presence of spatial […]

Mutation Testing of Quantum Programs: A Case Study With Qiskit

As quantum computing is still in its infancy, there is an inherent lack of knowledge and technology to test a quantum program properly. In the classical realm, mutation testing has been successfully used to evaluate how well a program’s test suite detects seeded faults (i.e., mutants). In this article, building on the definition of syntactically […]

Efficient Construction of a Control Modular Adder on a Carry-Lookahead Adder Using Relative-Phase Toffoli Gates

Control modular addition is a core arithmetic function, and we must consider the computational cost for actual quantum computers to realize efficient implementation. To achieve a low computational cost in a control modular adder, we focus on minimizingKQ (where K is the number of logical qubits required by the algorithm, and Q is the elementary […]

The Present and Future of Discrete Logarithm Problems on Noisy Quantum Computers

The discrete logarithm problem (DLP) is the basis for several cryptographic primitives. Since Shor’s work, it has been known that the DLP can be solved by combining a polynomial-size quantum circuit and a polynomial-time classical postprocessing algorithm. The theoretical result corresponds the situation where a quantum device working with a medium number of qubits of […]

Quantum Volume in Practice: What Users Can Expect From NISQ Devices

Quantum volume (QV) has become the de-facto standard benchmark to quantify the capability of noisy intermediate-scale quantum (NISQ) devices. While QV values are often reported by NISQ providers for their systems, we perform our own series of QV calculations on 24 NISQ devices currently offered by IBM Q, IonQ, Rigetti, Oxford Quantum Circuits, and Quantinuum […]

Hybrid Classical-Quantum Optimization Techniques for Solving Mixed-Integer Programming Problems in Production Scheduling

Quantum computing (QC) holds great promise to open up a new era of computing and has been receiving significant attention recently. To overcome the performance limitations of near-term QC, utilizing the current quantum computers to complement classical techniques for solving real-world problems is of utmost importance. In this article, we develop QC-based solution strategies that […]

Practical Quantum K-Means Clustering: Performance Analysis and Applications in Energy Grid Classification

In this work, we aim to solve a practical use-case of unsupervised clustering that has applications in predictive maintenance in the energy operations sector using quantum computers. Using only cloud access to quantum computers, we complete thorough performance analysis of what some current quantum computing systems are capable of for practical applications involving nontrivial mid-to-high-dimensional […]

Effects of Dynamical Decoupling and Pulse-Level Optimizations on IBM Quantum Computers

Currently available quantum computers are prone to errors. Circuit optimization and error mitigation methods are needed to design quantum circuits to achieve better fidelity when executed on NISQ hardware. Dynamical decoupling (DD) is generally used to suppress the decoherence error, and different DD strategies have been proposed. Moreover, the circuit fidelity can be improved by […]