Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design

While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum […]

Backtesting Quantum Computing Algorithms for Portfolio Optimization

In portfolio theory, the investment portfolio optimization problem is one of those problems whose complexity grows exponentially with the number of assets. By backtesting classical and quantum computing algorithms, we can get a sense of how these algorithms might perform in the real world. This work establishes a methodology for backtesting classical and quantum algorithms […]

Improving Urban Traffic Mobility via a Versatile Quantum Annealing Model

The growth of cities and the resulting increase in vehicular traffic pose significant challenges to the environment and citizens’ quality of life. To address these challenges, a new algorithm has been proposed that leverages the quantum annealing paradigm and D-wave’s machines to optimize the control of traffic lights in cities. The algorithm considers traffic information […]

A Low-Complexity Quantum Simulation Framework for Toeplitz-Structured Matrix and Its Application in Signal Processing

Toeplitz matrix reconstruction algorithms (TMRAs) are one of the central subroutines in array processing for wireless communication applications. The classical TMRAs have shown excellent accuracy in the spectral estimation for both uncorrelated and coherence sources in the recent era. However, TMRAs incorporate the classical eigenvalue decomposition technique for estimating the eigenvalues of the Toeplitz-structured covariance […]

Prediction of Solar Irradiance One Hour Ahead Based on Quantum Long Short-Term Memory Network

The short-term forecasting of photovoltaic (PV) power generation ensures the scheduling and dispatching of electrical power, helps design a PV-integrated energy management system, and enhances the security of grid operation. However, due to the randomness of solar energy, the output of the PV system will fluctuate, which will affect the safe operation of the grid. […]

Model-Predictive Quantum Control via Hamiltonian Learning

This article proposes an end-to-end framework for the learning-enabled control of closed quantum systems. The proposed learning technique is the first of its kind to utilize a hierarchical design, which layers probing control, quantum state tomography, quantum process tomography, and Hamiltonian learning to identify both the internal and control Hamiltonians. Within this context, a novel […]

QuNetSim: A Software Framework for Quantum Networks

As quantum network technologies develop, the need for teaching and engineering tools such as simulators and emulators rises. QuNetSim addresses this need. QuNetSim is a Python software framework that delivers an easy-to-use interface for simulating quantum networks at the network layer, which can be extended at little effort of the user to implement the corresponding […]

Quantum Attacks on HCTR and Its Variants

Recently, in Asiacrypt 2019, Bonnetain et al. have shown attacks by quantum adversaries on FX construction and Even-Mansour Cipher without using superposition queries to the encryption oracle. In this article, we use a similar approach to mount new attacks on Hash-Counter (HCTR) and Hash-Counter-Hash (HCH) constructions. In addition, we mount attacks on HCTR, tweakable-HCTR, and […]

Multiblock ADMM Heuristics for Mixed-Binary Optimization on Classical and Quantum Computers

Solving combinatorial optimization problems on current noisy quantum devices is currently being advocated for (and restricted to) binary polynomial optimization with equality constraints via quantum heuristic approaches. This is achieved using, for example, the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA). In this article, we present a decomposition-based approach to extend […]

Experimental Characterization, Modeling, and Analysis of Crosstalk in a Quantum Computer

In this article, we present the experimental characterization of crosstalk in quantum information processor using idle tomography and simultaneous randomized benchmarking. We quantify both “quantum” and “classical” crosstalk in the device and analyze quantum circuits considering crosstalk. We show that simulation considering only gate-error deviates from experimental results up to 27%, whereas simulation considering both […]