Quantum Topology Optimization via Quantum Annealing

We present a quantum annealing-based solution method for topology optimization (TO). In particular, we consider TO in a more general setting, i.e., applied to structures of continuum domains where designs are represented as distributed functions, referred to as continuum TO problems. According to the problem’s properties and structure, we formulate appropriate subproblems that can be […]

Quantum Annealing Methods and Experimental Evaluation to the Phase-Unwrapping Problem in Synthetic Aperture Radar Imaging

The focus of this work is to explore the use of quantum annealing solvers for the problem of phase unwrapping of synthetic aperture radar (SAR) images. Although solutions to this problem exist based on network programming, these techniques do not scale well to larger sized images. Our approach involves formulating the problem as a quadratic […]

Hybrid Classical-Quantum Optimization Techniques for Solving Mixed-Integer Programming Problems in Production Scheduling

Quantum computing (QC) holds great promise to open up a new era of computing and has been receiving significant attention recently. To overcome the performance limitations of near-term QC, utilizing the current quantum computers to complement classical techniques for solving real-world problems is of utmost importance. In this article, we develop QC-based solution strategies that […]

Deep Space Network Scheduling Using Quantum Annealing

The National Aeronautics and Space Administration’s (NASA) Deep Space Network (DSN) is responsible for communication and navigation for several NASA and international missions. The DSN comprises three complexes located in Goldstone (California, USA), Cambera (Australia), and Madrid (Spain). This distribution in longitude guarantees a full sky coverage. Each complex has one 70-m and several 34-m […]

Hybrid Classical-Quantum Optimization Techniques for Solving Mixed-Integer Programming Problems in Production Scheduling

Quantum computing (QC) holds great promise to open up a new era of computing and has been receiving significant attention recently. To overcome the performance limitations of near-term QC, utilizing the current quantum computers to complement classical techniques for solving real-world problems is of utmost importance. In this article, we develop QC-based solution strategies that […]

Experimental Demonstrations of Native Implementation of Boolean Logic Hamiltonian in a Superconducting Quantum Annealer

Experimental demonstrations of quantum annealing with “native” implementation of Boolean logic Hamiltonians are reported. As a superconducting integrated circuit, a problem Hamiltonian whose set of ground states is consistent with a given truth table is implemented for quantum annealing with no redundant qubits. As examples of the truth table, nand and nor are successfully fabricated […]

Performance of Domain-Wall Encoding for Quantum Annealing

In this article, we experimentally test the performance of the recently proposed domain-wall encoding of discrete variables Chancellor, 2019, on Ising model flux qubit quantum annealers. We compare this encoding with the traditional one-hot methods and find that they outperform the one-hot encoding for three different problems at different sizes of both the problem and […]

Single-Qubit Fidelity Assessment of Quantum Annealing Hardware

As a wide variety of quantum computing platforms become available, methods for assessing and comparing the performance of these devices are of increasing interest and importance. Inspired by the success of single-qubit error rate computations for tracking the progress of gate-based quantum computers, this work proposes a quantum annealing single-qubit assessment (QASA) protocol for quantifying […]

Benchmarking Hamiltonian Noise in the D-Wave Quantum Annealer

Various sources of noise limit the performance of quantum computers by altering qubit states in an uncontrolled manner throughout computations and reducing their coherence time. In quantum annealers, this noise introduces additional fluctuations to the parameters defining the original problem Hamiltonian, such that they find the ground states of problems perturbed from those originally programmed. […]

Solving the Max-Flow Problem on a Quantum Annealing Computer

This article addresses the question of implementing a maximum flow algorithm on directed graphs in a formulation suitable for a quantum annealing computer. Three distinct approaches are presented. In all three cases, the flow problem is formulated as a quadratic unconstrained binary optimization (QUBO) problem amenable to quantum annealing. The first implementation augments a graph […]