Q-Gen: A Parameterized Quantum Circuit Generator

Abstract: Unlike most classical algorithms that take an input and give the solution directly as an output, quantum algorithms produce a quantum circuit that works as an indirect solution to computationally hard problems. In the full quantum computing workflow, most data processing remains in the classical domain except for running the quantum circuit in the […]

Quantum Direct-Sequence Spread-Spectrum CDMA Communication Systems: Mathematical Foundations

Abstract: This article describes the fundamental principles and mathematical foundations of quantum direct-sequence spread-spectrum code division multiple-access communication systems. The evolution of quantum signals through the quantum direct-sequence spread-spectrum multiple-access communication system is carefully characterized by a novel approach called the decomposition of creation operators. In this methodology, the creation operator of the transmitted quantum […]

Benchmarking Quantum Machine Learning Kernel Training for Classification Tasks

Quantum-enhanced machine learning is a rapidly evolving field that aims to leverage the unique properties of quantum mechanics to enhance classical machine learning. However, the practical applicability of these methods remains an open question, particularly beyond the context of specifically crafted toy problems, and given the current limitations of quantum hardware. For more about this […]

Benchmarking Quantum Circuit Transformation With QKNOB Circuits

Current superconducting quantum devices impose strict connectivity constraints on quantum circuit execution, necessitating circuit transformation before executing quantum circuits on physical hardware. Numerous quantum circuit transformation (QCT) algorithms have been proposed. To enable faithful evaluation of state-of-the-art QCT algorithms, this article introduces qubit mapping benchmark with known near-optimality (QKNOB), a novel benchmark construction method for […]

Simulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS)

Quantum dots (QDs) must be tuned precisely to provide a suitable basis for quantum computation. A scalable platform for quantum computing can only be achieved by fully automating the tuning process. One crucial step is to trap the appropriate number of electrons in the QDs, typically accomplished by analyzing charge stability diagrams (CSDs). Training and […]

Probing Quantum Telecloning on Superconducting Quantum Processors

Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on […]

Simulating Quantum Field Theories on Gate-Based Quantum Computers

We implement a simulation of a quantum field theory in 1+1 space–time dimensions on a gate-based quantum computer using the light-front formulation of the theory. The nonperturbative simulation of the Yukawa model field theory is verified on IBM’s simulator and is also demonstrated on a small-scale IBM circuit-based quantum processor, on the cloud, using IBM […]

Quantum Fuzzy Inference Engine for Particle Accelerator Control

Recently, quantum computing has been proven as an ideal theory for the design of fuzzy inference engines, thanks to its capability to efficiently solve the rule explosion problem. In this scenario, a quantum fuzzy inference engine (QFIE) was proposed as a quantum algorithm able to generate an exponential computational advantage over conventional fuzzy inference engines. […]

Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment

This article examines the current status of quantum computing (QC) in Earth observation and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and QC. We then assess […]

Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment

This article examines the current status of quantum computing (QC) in Earth observation and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and QC. We then assess […]