Quantum Approximate Bayesian Optimization Algorithms With Two Mixers and Uncertainty Quantification

The searching efficiency of the quantum approximate optimization algorithm is dependent on both the classical and quantum sides of the algorithm. Recently, a quantum approximate Bayesian optimization algorithm (QABOA) that includes two mixers was developed, where surrogate-based Bayesian optimization is applied to improve the sampling efficiency of the classical optimizer. A continuous-time quantum walk mixer […]

A Cost and Power Feasibility Analysis of Quantum Annealing for NextG Cellular Wireless Networks

In order to meet mobile cellular users’ ever-increasing data demands, today’s 4G and 5G wireless networks are designed mainly with the goal of maximizing spectral efficiency. While they have made progress in this regard, controlling the carbon footprint and operational costs of such networks remains a long-standing problem among network designers. This article takes a […]

Optimal Control of the Operating Regime of a Single-Electron Double Quantum Dot

The double-quantum-dot device benefits from the advantages of both the spin and charge qubits, while offering ways to mitigate their drawbacks. Careful gate voltage modulation can grant greater spinlike or chargelike dynamics to the device, yielding long coherence times with the former and high electrical susceptibility with the latter for electrically driven spin rotations or […]

Learning Circular Hidden Quantum Markov Models: A Tensor Network Approach

This article proposes circular hidden quantum Markov models (c-HQMMs), which can be applied for modeling temporal data. We show that c-HQMMs are equivalent to a tensor network (more precisely, circular local purified state) model. This equivalence enables us to provide an efficient learning model for c-HQMMs. The proposed learning approach is evaluated on six real […]

Private Product Computation Using Quantum Entanglement

In this article, we show that a pair of entangled qubits can be used to compute a product privately. More precisely, two participants with a private input from a finite field can perform local operations on a shared, Bell-like quantum state, and when these qubits are later sent to a third participant, the third participant […]

Emulation of Quantum Algorithms Using CMOS Analog Circuits

Quantum computers are regarded as the future of computing, as they are believed to be capable of solving extremely complex problems that are intractable on conventional digital computers. However, near-term quantum computers are prone to a plethora of noise sources that are difficult to mitigate, possibly limiting their scalability and precluding us from running any […]

Hybrid Quantum–Classical Generative Adversarial Network for High-Resolution Image Generation

Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in problems, such as classification and identification tasks. A subclass of QML methods is quantum generative adversarial networks (QGANs), which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation […]

Shor’s Algorithm Using Efficient Approximate Quantum Fourier Transform

Shor’s algorithm solves the integer factoring and discrete logarithm problems in polynomial time. Therefore, the evaluation of Shor’s algorithm is essential for evaluating the security of currently used public-key cryptosystems because the integer factoring and discrete logarithm problems are crucial for the security of these cryptosystems. In this article, a new approximate quantum Fourier transform […]

Approaching Collateral Optimization for NISQ and Quantum-Inspired Computing (May 2023)

Collateral optimization refers to the systematic allocation of financial assets to satisfy obligations or secure transactions while simultaneously minimizing costs and optimizing the usage of available resources. This involves assessing the number of characteristics, such as the cost of funding and quality of the underlying assets to ascertain the optimal collateral quantity to be posted […]

Quantum Algorithm for Position Weight Matrix Matching

In this article, we propose two quantum algorithms for a problem in bioinformatics, position weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence, such as DNA and protein that have high scores defined by the PWM and are, thus, of informational importance related to biological function. The two proposed […]