Multiplexed Bilayered Realization of Fault-Tolerant Quantum Computation Over Optically Networked Trapped-Ion Modules

Abstract: We study an architecture for fault-tolerant measurement-based quantum computation (FT-MBQC) over optically-networked trapped-ion modules. The architecture is implemented with a finite number of modules and ions per module, and leverages photonic interactions for generating remote entanglement between modules and local Coulomb interactions for intra-modular entangling gates. We focus on generating the topologically protected Raussendorf–Harrington–Goyal […]

A Sparse-Event Simulation Engine to Model Coincidence-Based Ranging Architectures in Quantum Lidar

Abstract: Nonclassical radar and lidar systems have received substantial interest recently; however, although many experimental demonstrations have provided deep physical knowledge of such systems, there remains a lack of effective system models to obtain fundamental metrics such as range resolution as a function of system parameters. This work introduces a high-fidelity simulation platform to mimic […]

Black-Box Optimization of the Storage Location Assignment Problem in Logistics Centers Using an Annealing Algorithm

Abstract: The manufacturing industry encounters numerous optimization problems, one of which is the optimization of storage location assignment (OSLA) problem in logistics. OSLA is a combinatorial optimization problem focused on improving the efficiency of picking operations in logistics centers. We explore quantum annealing (QA) as a potential solution to combinatorial optimization problems and investigate its […]

Robust H∞ Uncertainties-Tolerant Observer-Based Reference Quantum Trajectory Tracking Control for Lindblad Master Equation

Abstract: In this article, a robust output feedback reference quantum trajectory tracking control design is proposed through the simultaneous continuous weak measurement of noncommuting observables. Using the robust H∞ uncertainties-tolerant observer-based reference quantum trajectory tracking control (UTOBRQTTC) design strategy, the proposed method can robustly estimate the quantum trajectory and robustly track a sequence of any […]

Exploration of Design Alternatives for Reducing Idle Time in Shor’s Algorithm: A Study on Monolithic and Distributed Quantum Systems

Abstract: Shor’s algorithm is one of the most prominent quantum algorithms, yet finding efficient implementations remains an active research challenge. While many approaches focus on low-level modular arithmetic optimizations, a broader perspective can provide additional opportunities for improvement. By adopting a midlevel abstraction, we analyze the algorithm as a sequence of computational tasks, enabling systematic […]

End-to-End Workflow for Machine-Learning-Based Qubit Readout With QICK and hls4ml

Abstract: In this article, we present an end-to-end workflow for superconducting qubit readout that embeds codesigned neural networks into the quantum instrumentation control kit (QICK). Capitalizing on the custom firmware and software of the QICK platform, which is built on Xilinx radiofrequency system-on-chip field-programmable gate arrays (FPGAs), we aim to leverage machine learning (ML) to […]

Benchmarking the Ability of a Controller to Execute Quantum Error Corrected Non-Clifford Circuits

Abstract: Reaching fault-tolerant quantum computation relies on the successful implementation of non-Clifford circuits with quantum error correction (QEC). In QEC, quantum gates and measurements encode quantum information into an error-protected Hilbert space, while classical processing decodes the measurements into logical errors. QEC non-Clifford gates pose the greatest computation challenge from the classical controller’s perspective, as […]

DT-QFL: Dual-Timeline Quantum Federated Learning With Time-Symmetric Updates, Temporal Memory Kernels, and Reversed Gradient Dynamics

Abstract: Federated learning has emerged as a powerful paradigm for decentralized model training, ensuring privacy preservation by allowing clients to collaboratively learn a shared model without exchanging raw data. Quantum federated learning (QFL) extends this approach by leveraging quantum computing to enhance computational efficiency and security. However, existing QFL frameworks face challenges in handling temporal […]

Fast State Stabilization Using Deep Reinforcement Learning for Measurement-Based Quantum Feedback Control

Abstract: The stabilization of quantum states is a fundamental problem for realizing various quantum technologies. Measurement-based-feedback strategies have demonstrated powerful performance, and the construction of quantum control signals using measurement information has attracted great interest. However, the interaction between quantum systems and the environment is inevitable, especially when measurements are introduced, which leads to decoherence. […]

A Grover-Meets-Simon Approach to Match Vector Boolean Functions

Abstract: The Boolean matching problem via NP-equivalence requires determining whether two Boolean functions are equivalent or not up to a permutation and negation of the input binary variables. Its solution is a fundamental step in the electronic design automation (EDA) tool chains commonly used for digital circuit design. In fact, the library-mapping step of an […]