A Grover-Meets-Simon Approach to Match Vector Boolean Functions

Abstract: The Boolean matching problem via NP-equivalence requires determining whether two Boolean functions are equivalent or not up to a permutation and negation of the input binary variables. Its solution is a fundamental step in the electronic design automation (EDA) tool chains commonly used for digital circuit design. In fact, the library-mapping step of an […]

Memory-Optimized Cubic Splines for High-Fidelity Quantum Operations

Abstract: Radio frequency pulses are preponderant for the control of quantum bits and the execution of operations in quantum computers. The ability to fine-tune key pulse parameters, such as time-dependent amplitude, phase, and frequency, is essential to achieve maximal gate fidelity and mitigate errors. As systems increase in scale, a larger proportion of the control […]

Runtime–Coherence Tradeoffs for Hybrid Satisfiability Solvers

Abstract: Many search-based quantum algorithms that achieve a theoretical speedup are not practically relevant since they require extraordinarily long coherence times, or lack the parallelizability of their classical counterparts. This raises the question of how to divide computational tasks into a collection of parallelizable subproblems, each of which can be solved by a quantum computer […]

Explicit Quantum Circuit for Simulating the Advection–Diffusion–Reaction Dynamics

We assess the convergence of the Carleman linearization of advection–diffusion–reaction (ADR) equations with a logistic nonlinearity. It is shown that five Carleman iterates provide a satisfactory approximation of the original ADR across a broad range of parameters and strength of nonlinearity. To assess the feasibility of a quantum algorithm based on this linearization, we analyze […]