Benchmarking the Ability of a Controller to Execute Quantum Error Corrected Non-Clifford Circuits

Abstract: Reaching fault-tolerant quantum computation relies on the successful implementation of non-Clifford circuits with quantum error correction (QEC). In QEC, quantum gates and measurements encode quantum information into an error-protected Hilbert space, while classical processing decodes the measurements into logical errors. QEC non-Clifford gates pose the greatest computation challenge from the classical controller’s perspective, as […]

Improved Belief Propagation Decoding Algorithms for Surface Codes

Abstract: Quantum error correction is crucial for universal fault-tolerant quantum computing. Highly accurate and low-time-complexity decoding algorithms play an indispensable role in ensuring quantum error correction works effectively. Among existing decoding algorithms, belief propagation (BP) is notable for its nearly linear time complexity and general applicability to stabilizer codes. However, BP’s decoding accuracy without postprocessing […]

Reducing Quantum Error Correction Overhead With Versatile Flag-Sharing Syndrome Extraction Circuits

Abstract: Given that quantum error correction processes are unreliable, an efficient error syndrome extraction circuit should use fewer ancillary qubits, quantum gates, and measurements while maintaining low circuit depth, to minimize the circuit area, roughly defined as the product of circuit depth and the number of physical qubits. We propose to design parallel flagged syndrome […]

Engineering Quantum Error Correction Codes Using Evolutionary Algorithms

Quantum error correction and the use of quantum error correction codes are likely to be essential for the realization of practical quantum computing. Because the error models of quantum devices vary widely, quantum codes that are tailored for a particular error model may have much better performance. For more about this article see link below. […]

Approximate Solutions of Combinatorial Problems via Quantum Relaxations

Combinatorial problems are formulated to find optimal designs within a fixed set of constraints and are commonly found across diverse engineering and scientific domains. Understanding how to best use quantum computers for combinatorial optimization remains an ongoing area of study. Here, we propose new methods for producing approximate solutions to quadratic unconstrained binary optimization problems, […]

Convolutional Neural Decoder for Surface Codes

To perform reliable information processing in quantum computers, quantum error correction (QEC) codes are essential for the detection and correction of errors in the qubits. Among QEC codes, topological QEC codes are designed to interact between the neighboring qubits, which is a promising property for easing the implementation requirements. In addition, the locality to the […]

Harnessing the Power of Long-Range Entanglement for Clifford Circuit Synthesis

In superconducting architectures, limited connectivity remains a significant challenge for the synthesis and compilation of quantum circuits. We consider models of entanglement-assisted computation where long-range operations are achieved through injections of large Greenberger–Horne–Zeilinger (GHZ) states. These are prepared using ancillary qubits acting as an “entanglement bus,” unlocking global operation primitives such as multiqubit Pauli rotations […]

Trellis Decoding for Qudit Stabilizer Codes and Its Application to Qubit Topological Codes

Trellis decoders are a general decoding technique first applied to qubit-based quantum error correction codes by Ollivier and Tillich in 2006. Here, we improve the scalability and practicality of their theory, show that it has strong structure, extend the results using classical coding theory as a guide, and demonstrate a canonical form from which the […]

Rateless Protograph LDPC Codes for Quantum Key Distribution

Information reconciliation (IR) is a key step in quantum key distribution (QKD). In recent years, blind reconciliation based on low-density parity-check (LDPC) codes has replaced Cascade as a standard de facto since it guarantees efficient IR without a priori quantum bit error rate estimation and with limited interactivity between the parties, which is essential in […]

Perfect and Quasi-Perfect Codes for the Bosonic Classical-Quantum Channel

In this article, we explore perfect and quasi-perfect codes for the Bosonic channel, where information is generated by a laser and conveyed in the form of coherent states. In particular, we consider the phase-modulation codebook for coherent states in a Bosonic channel. We show that these phase-modulation codes are quasi-perfect as long as the cardinality […]