Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation

The drug design process currently requires considerable time and resources to develop each new compound that enters the market. This work develops an application of hybrid quantum generative models based on the integration of parameterized quantum circuits into known molecular generative adversarial networks and proposes quantum cycle architectures that improve model performance and stability during […]

Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation

The drug design process currently requires considerable time and resources to develop each new compound that enters the market. This work develops an application of hybrid quantum generative models based on the integration of parameterized quantum circuits into known molecular generative adversarial networks and proposes quantum cycle architectures that improve model performance and stability during […]

FASQuiC: Flexible Architecture for Scalable Spin Qubit Control

As scaling becomes a key issue for large-scale quantum computing, hardware control systems will become increasingly costly in resources. This article presents a compact direct digital synthesis architecture for signal generation adapted for spin qubits that is scalable in terms of waveform accuracy and the number of synchronized channels. The architecture can produce programmable combinations […]

Hybrid Quantum–Classical Generative Adversarial Network for High-Resolution Image Generation

Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in problems, such as classification and identification tasks. A subclass of QML methods is quantum generative adversarial networks (QGANs), which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation […]

On the Logical Error Rate of Sparse Quantum Codes

The quantum paradigm presents a phenomenon known as degeneracy that can potentially improve the performance of quantum error correcting codes. However, the effects of this mechanism are sometimes ignored when evaluating the performance of sparse quantum codes and the logical error rate is not always correctly reported. In this article, we discuss previously existing methods […]

A High-Resolution Single-Photon Arrival-Time Measurement With Self-Antithetic Variance Reduction in Quantum Applications: Theoretical Analysis and Performance Estimation

An almost all-digital time-to-digital converter (TDC) possessing subpicosecond resolutions, scalable dynamic ranges, high linearity, high noise immunity, and moderate conversion rates can be achieved by a random sampling-and-averaging (RSA) approach with the self-antithetic variance reduction (SAVR) technique for time-correlated single-photon counting (TCSPC) quantum measurements. This article presents detailed theoretical analysis and behavior-model verifications of the […]

Encoding of Nonbinary Entanglement-Unassisted and Assisted Stabilizer Codes

Quantum coding schemes over qudits using preshared entanglement between the encoder and decoder can provide better error correction capability than without it. In this article, we develop procedures for constructing encoding operators for entanglement-unassisted and entanglement-assisted qudit stabilizer codes over Fpk, with p prime and k≥1 from first principles, generalizing prior works on qubit-based codes and codes that work […]