Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation

The drug design process currently requires considerable time and resources to develop each new compound that enters the market. This work develops an application of hybrid quantum generative models based on the integration of parameterized quantum circuits into known molecular generative adversarial networks and proposes quantum cycle architectures that improve model performance and stability during […]

Hybrid Quantum Cycle Generative Adversarial Network for Small Molecule Generation

The drug design process currently requires considerable time and resources to develop each new compound that enters the market. This work develops an application of hybrid quantum generative models based on the integration of parameterized quantum circuits into known molecular generative adversarial networks and proposes quantum cycle architectures that improve model performance and stability during […]

On the Logical Error Rate of Sparse Quantum Codes

The quantum paradigm presents a phenomenon known as degeneracy that can potentially improve the performance of quantum error correcting codes. However, the effects of this mechanism are sometimes ignored when evaluating the performance of sparse quantum codes and the logical error rate is not always correctly reported. In this article, we discuss previously existing methods […]

Quantum Kernels for Real-World Predictions Based on Electronic Health Records

Research on near-term quantum machine learning has explored how classical machine learning algorithms endowed with access to quantum kernels (similarity measures) can outperform their purely classical counterparts. Although theoretical work has shown a provable advantage on synthetic data sets, no work done to date has studied empirically whether the quantum advantage is attainable and with […]

Quantum Volume in Practice: What Users Can Expect From NISQ Devices

Quantum volume (QV) has become the de-facto standard benchmark to quantify the capability of noisy intermediate-scale quantum (NISQ) devices. While QV values are often reported by NISQ providers for their systems, we perform our own series of QV calculations on 24 NISQ devices currently offered by IBM Q, IonQ, Rigetti, Oxford Quantum Circuits, and Quantinuum […]

Practical Quantum K-Means Clustering: Performance Analysis and Applications in Energy Grid Classification

In this work, we aim to solve a practical use-case of unsupervised clustering that has applications in predictive maintenance in the energy operations sector using quantum computers. Using only cloud access to quantum computers, we complete thorough performance analysis of what some current quantum computing systems are capable of for practical applications involving nontrivial mid-to-high-dimensional […]

Quantum Volume in Practice: What Users Can Expect From NISQ Devices

Quantum volume (QV) has become the de-facto standard benchmark to quantify the capability of noisy intermediate-scale quantum (NISQ) devices. While QV values are often reported by NISQ providers for their systems, we perform our own series of QV calculations on 24 NISQ devices currently offered by IBM Q, IonQ, Rigetti, Oxford Quantum Circuits, and Quantinuum […]

Performance of Domain-Wall Encoding for Quantum Annealing

In this article, we experimentally test the performance of the recently proposed domain-wall encoding of discrete variables Chancellor, 2019, on Ising model flux qubit quantum annealers. We compare this encoding with the traditional one-hot methods and find that they outperform the one-hot encoding for three different problems at different sizes of both the problem and […]

Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way

Existing protocols for benchmarking current quantum coprocessors fail to meet the usual standards for assessing the performance of high-performance-computing platforms. After a synthetic review of these protocols—whether at the gate, circuit, or application level—we introduce a new benchmark, dubbed Atos Q-score, which is application-centric, hardware-agnostic, and scalable to quantum advantage processor sizes and beyond. The […]

Logical Clifford Synthesis for Stabilizer Codes

Quantum error-correcting codes are used to protect qubits involved in quantum computation. This process requires logical operators to be translated into physical operators acting on physical quantum states. In this article, we propose a mathematical framework for synthesizing physical circuits that implement logical Clifford operators for stabilizer codes. Circuit synthesis is enabled by representing the […]