A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity

Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to […]

Optimal Partitioning of Quantum Circuits Using Gate Cuts and Wire Cuts

A limited number of qubits, high error rates, and limited qubit connectivity are major challenges for effective near-term quantum computations. Quantum circuit partitioning divides a quantum computation into classical postprocessing steps and a set of smaller scale quantum computations that individually require fewer qubits, lower qubit connectivity, and typically incur less error. However, as partitioning […]

Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design

While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum […]

Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment

This article examines the current status of quantum computing (QC) in Earth observation and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and QC. We then assess […]

A Proposed Quantum Framework for Low-Complexity Quantum Simulation and Spectrum Estimation of Hankel-Patterned Systems

The structured matrix completion problem (SMCP) is ubiquitous in several signal processing applications. In this article, we consider a fixed pattern, namely, the Hankel-structure for the SMCP under quantum formalism. By exploiting its structure, a lower-gate-complexity quantum circuit realization of a Hankel system is demonstrated. Further, we propose a quantum simulation algorithm for the Hankel-structured […]

Optimal Control of the Operating Regime of a Single-Electron Double Quantum Dot

The double-quantum-dot device benefits from the advantages of both the spin and charge qubits, while offering ways to mitigate their drawbacks. Careful gate voltage modulation can grant greater spinlike or chargelike dynamics to the device, yielding long coherence times with the former and high electrical susceptibility with the latter for electrically driven spin rotations or […]

Emulation of Quantum Algorithms Using CMOS Analog Circuits

Quantum computers are regarded as the future of computing, as they are believed to be capable of solving extremely complex problems that are intractable on conventional digital computers. However, near-term quantum computers are prone to a plethora of noise sources that are difficult to mitigate, possibly limiting their scalability and precluding us from running any […]

Shor’s Algorithm Using Efficient Approximate Quantum Fourier Transform

Shor’s algorithm solves the integer factoring and discrete logarithm problems in polynomial time. Therefore, the evaluation of Shor’s algorithm is essential for evaluating the security of currently used public-key cryptosystems because the integer factoring and discrete logarithm problems are crucial for the security of these cryptosystems. In this article, a new approximate quantum Fourier transform […]

Qubit Reduction and Quantum Speedup for Wireless Channel Assignment Problem

In this article, we propose a novel method of formulating an NP-hard wireless channel assignment problem as a higher-order unconstrained binary optimization (HUBO), where the Grover adaptive search (GAS) is used to provide a quadratic speedup for solving the problem. The conventional method relies on a one-hot encoding of the channel indices, resulting in a […]

Testing Platform-Independent Quantum Error Mitigation on Noisy Quantum Computers

We apply quantum error mitigation (QEM) techniques to a variety of benchmark problems and quantum computers to evaluate the performance of QEM in practice. To do so, we define an empirically motivated, resource-normalized metric of the improvement of error mitigation, which we call the improvement factor, and calculate this metric for each experiment we perform. […]