A Proposed Quantum Framework for Low-Complexity Quantum Simulation and Spectrum Estimation of Hankel-Patterned Systems

The structured matrix completion problem (SMCP) is ubiquitous in several signal processing applications. In this article, we consider a fixed pattern, namely, the Hankel-structure for the SMCP under quantum formalism. By exploiting its structure, a lower-gate-complexity quantum circuit realization of a Hankel system is demonstrated. Further, we propose a quantum simulation algorithm for the Hankel-structured […]

A Low-Complexity Quantum Simulation Framework for Toeplitz-Structured Matrix and Its Application in Signal Processing

Toeplitz matrix reconstruction algorithms (TMRAs) are one of the central subroutines in array processing for wireless communication applications. The classical TMRAs have shown excellent accuracy in the spectral estimation for both uncorrelated and coherence sources in the recent era. However, TMRAs incorporate the classical eigenvalue decomposition technique for estimating the eigenvalues of the Toeplitz-structured covariance […]

Extensible Gauge-Invariant FDM With Spin–Orbit Coupling for Quantum Devices

We present a novel derivation and implementation of the finite-difference method (FDM) that is gauge invariant and incorporates spin–orbit coupling for the study of quantum systems. This version of FDM is meant to assist in the design and simulation of quantum devices that utilize multiple internal degrees of freedom (e.g., spin) by providing a way […]

Design and Analysis of Digital Communication Within an SoC-Based Control System for Trapped-Ion Quantum Computing

Large-scale quantum information processing requires the use of quantum error-correcting codes to mitigate the effects of noise in quantum devices. Topological error-correcting codes, such as surface codes, are promising candidates, as they can be implemented using only local interactions in a 2-D array of physical qubits. Procedures, such as defect braiding and lattice surgery, can […]

Noise Reduction Methods for Charge Stability Diagrams of Double Quantum Dots

Operating semiconductor quantum dots as quantum bits requires isolating single electrons by adjusting gate voltages. The transitions of electrons to and from the dots appear as a honeycomb-like pattern in recorded charge stability diagrams (CSDs). Thus, detecting the pattern is essential to tune a double dot, but manual tuning is seriously time-consuming. However, automation of […]

Simultaneous Estimation of Parameters and the State of an Optical Parametric Oscillator System

In this article, we consider the filtering problem of an optical parametric oscillator (OPO). The OPO pump power may fluctuate due to environmental disturbances, resulting in uncertainty in the system modeling. Thus, both the state and the unknown parameter may need to be estimated simultaneously. We formulate this problem using a state-space representation of the […]

Stable Turnkey Laser System for a Yb/Ba Trapped-Ion Quantum Computer

This work presents a stable and reliable turnkey continuous-wave laser system for a Yb/Ba multispecies trapped-ion quantum computer. The compact and rack-mountable optics system exhibits high robustness, operating over a year without realignment, regardless of temperature changes in the laboratory. The overall optical system is divided into a few isolated modules interconnected by optical fibers […]

A High-Resolution Single-Photon Arrival-Time Measurement With Self-Antithetic Variance Reduction in Quantum Applications: Theoretical Analysis and Performance Estimation

An almost all-digital time-to-digital converter (TDC) possessing subpicosecond resolutions, scalable dynamic ranges, high linearity, high noise immunity, and moderate conversion rates can be achieved by a random sampling-and-averaging (RSA) approach with the self-antithetic variance reduction (SAVR) technique for time-correlated single-photon counting (TCSPC) quantum measurements. This article presents detailed theoretical analysis and behavior-model verifications of the […]