Timing Constraints Imposed by Classical Digital Control Systems on Photonic Implementations of Measurement-Based Quantum Computing

Most of the architectural research on photonic implementations of measurement-based quantum computing (MBQC) has focused on the quantum resources involved in the problem with the implicit assumption that these will provide the main constraints on system scaling. However, the “flying-qubit” architecture of photonic MBQC requires specific timing constraints that need to be met by the […]

Efficient Quantum Network Communication Using Optimized Entanglement Swapping Trees

Quantum network communication is challenging, as the no-cloning theorem in the quantum regime makes many classical techniques inapplicable; in particular, the direct transmission of qubit states over long distances is infeasible due to unrecoverable errors. For the long-distance communication of unknown quantum states, the only viable communication approach (assuming local operations and classical communications) is […]

Estimation of the CHSH Parameter Using HOM Interference

The Clauser–Horne–Shimony–Holt (CHSH) experiment is an essential test of nonlocality in quantum mechanics and can be used to validate the principle of entanglement. In addition to verifying entanglement, the measurable CHSH parameter can also be used to gauge the quality of the entanglement present in a system. The measurement of Hong–Ou–Mandel (HOM) interference is another […]

Key Device and Materials Specifications for a Repeater Enabled Quantum Internet

Entangled photons can be used to create a truly secure communication link between two parties. However, the distance over which this can be achieved is limited by the transmission losses associated with optical fibers. One potential solution is using quantum repeaters (QRs) where initial entanglement is created over short distances and then extended via entanglement […]

Attacking the Quantum Internet

The main service provided by the coming quantum Internet will be creating entanglement between any two quantum nodes. We discuss and classify attacks on quantum repeaters, which will serve roles similar to those of classical Internet routers. We have modeled the components for and structure of quantum repeater network nodes. With this model, we point […]

Hybrid Dissipative and Dispersive Optomechanically Induced Transparency

Traditionally, the optical interference and energy conversion could be modulated by dissipation and dispersion in nonlinear optomechanical systems. Here, in this article, we study the enhancement of dissipative coupling on transparency under generalized optomechanical coupling and theoretically illustrate the generation of optomechanically induced transparency with gain and interference tuning. It enables the enhancement of the […]