Superconducting Nanostrip Photon-Number-Resolving Detector as an Unbiased Random Number Generator

Detectors capable of resolving the number of photons are essential in many applications, ranging from classic photonics to quantum optics and quantum communication. In particular, photon-number-resolving detectors based on arrays of superconducting nanostrips can offer a high detection efficiency, a low dark count rate, and a recovery time of a few nanoseconds. In this work, […]

Continuous-Variable Quantum Secret Sharing in Fast-Fluctuating Channels

Recently, several continuous-variable quantum secret sharing (CV-QSS) protocols were proposed, while most of them are limited to the fiber channel systems with a relatively stable transmissivity. However, by means of complex channels, the transmissivity fluctuates dramatically in time with a probability distribution, which will lead to a fast-fluctuating attack. Therefore, the security analysis of CV-QSS […]

Time Binning Method for Nonpulsed Sources Characterization With a Superconducting Photon Number Resolving Detector

Photon number resolving detectors find space in many fields, such as quantum optics, boson sampling, and fluorescence spectroscopy. In particular, the reconstruction of the input photon distribution is essential in quantum communications to detect photon-number-splitting attacks. In this work, we discuss the operation configurations of a photon number resolving detector based on superconducting nanostrips at […]

Millimeter-Waves to Terahertz SISO and MIMO Continuous Variable Quantum Key Distribution

With the exponentially increased demands for large bandwidth, it is important to think about the best network platform as well as the security and privacy of the information in communication networks. Millimeter (mm)-waves and terahertz (THz) with high carrier frequencies are proposed as the enabling technologies to overcome Shannon’s channel capacity limit of existing communication […]

Estimation of the CHSH Parameter Using HOM Interference

The Clauser–Horne–Shimony–Holt (CHSH) experiment is an essential test of nonlocality in quantum mechanics and can be used to validate the principle of entanglement. In addition to verifying entanglement, the measurable CHSH parameter can also be used to gauge the quality of the entanglement present in a system. The measurement of Hong–Ou–Mandel (HOM) interference is another […]

Estimation of the CHSH Parameter Using HOM Interference

The Clauser–Horne–Shimony–Holt (CHSH) experiment is an essential test of nonlocality in quantum mechanics and can be used to validate the principle of entanglement. In addition to verifying entanglement, the measurable CHSH parameter can also be used to gauge the quality of the entanglement present in a system. The measurement of Hong–Ou–Mandel (HOM) interference is another […]

Key Device and Materials Specifications for a Repeater Enabled Quantum Internet

Entangled photons can be used to create a truly secure communication link between two parties. However, the distance over which this can be achieved is limited by the transmission losses associated with optical fibers. One potential solution is using quantum repeaters (QRs) where initial entanglement is created over short distances and then extended via entanglement […]