BeSnake: A Routing Algorithm for Scalable Spin-Qubit Architectures

As quantum computing devices increase in size with respect to the number of qubits, two-qubit interactions become more challenging, necessitating innovative and scalable qubit routing solutions. In this work, we introduce beSnake, a novel algorithm specifically designed to address the intricate qubit routing challenges in scalable spin-qubit architectures. Unlike traditional methods in superconducting architectures that […]

On Quantum Natural Policy Gradients

This article delves into the role of the quantum Fisher information matrix (FIM) in enhancing the performance of parameterized quantum circuit (PQC)-based reinforcement learning agents. While previous studies have highlighted the effectiveness of PQC-based policies preconditioned with the quantum FIM in contextual bandits, its impact in broader reinforcement learning contexts, such as Markov decision processes, […]

Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture

Modern cloud/edge architectures need to orchestrate multiple layers of heterogeneous computing nodes, including pervasive sensors/actuators, distributed edge/fog nodes, centralized data centers, and quantum devices. The optimal assignment and scheduling of computation on the different nodes is a very difficult problem, with NP-hard complexity. In this article, we explore the possibility of solving this problem with […]

Application of Quantum Recurrent Neural Network in Low-Resource Language Text Classification

Text sentiment analysis is an important task in natural language processing and has always been a hot research topic. However, in low-resource regions such as South Asia, where languages like Bengali are widely used, the research interest is relatively low compared to high-resource regions due to limited computational resources, flexible word order, and high inflectional […]

Parallelizing Quantum Simulation With Decision Diagrams

Since people became aware of the power of quantum phenomena in the domain of traditional computation, a great number of complex problems that were once considered intractable in the classical world have been tackled. The downsides of quantum supremacy are its high cost and unpredictability. Numerous researchers are relying on quantum simulators running on classical […]

Parallelizing Quantum Simulation With Decision Diagrams

Since people became aware of the power of quantum phenomena in the domain of traditional computation, a great number of complex problems that were once considered intractable in the classical world have been tackled. The downsides of quantum supremacy are its high cost and unpredictability. Numerous researchers are relying on quantum simulators running on classical […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Scalable QKD Postprocessing System With Reconfigurable Hardware Accelerator

Key distillation is an essential component of every quantum key distribution (QKD) system because it compensates for the inherent transmission errors of a quantum channel. However, the interoperability and throughput aspects of the postprocessing components are often neglected. In this article, we propose a high-throughput key distillation framework that supports multiple QKD protocols, implemented in […]