Spatiotemporal Multiplexed Rydberg Receiver

Rydberg states of alkali atoms, where the outer valence electron is excited to high principal quantum numbers, have large electric dipole moments allowing them to be used as sensitive, wideband, electric field sensors. These sensors use electromagnetically induced transparency (EIT) to measure incident electric fields. The characteristic timescale necessary to establish EIT determines the effective […]

Rydberg Atom Electric Field Sensors for Communications and Sensing

Rydberg atom electric field sensors are projected to enable novel capabilities for resilient communications and sensing. This quantum sensor is small-size, highly sensitive, and broadly tunable, and it has the potential for performing precision vector electric field and angle-of-arrival measurements. While these atomic electric field sensors will not replace traditional receivers in commodity applications for […]