Two-Step Quantum Search Algorithm for Solving Traveling Salesman Problems

Quantum search algorithms, such as Grover’s algorithm, are anticipated to efficiently solve constrained combinatorial optimization problems. However, applying these algorithms to the traveling salesman problem (TSP) on a quantum circuit presents a significant challenge. Existing quantum search algorithms for the TSP typically assume that an initial state—an equal superposition of all feasible solutions satisfying the […]

Explicit Quantum Circuit for Simulating the Advection–Diffusion–Reaction Dynamics

We assess the convergence of the Carleman linearization of advection–diffusion–reaction (ADR) equations with a logistic nonlinearity. It is shown that five Carleman iterates provide a satisfactory approximation of the original ADR across a broad range of parameters and strength of nonlinearity. To assess the feasibility of a quantum algorithm based on this linearization, we analyze […]

Variational Quantum Algorithms for Differential Equations on a Noisy Quantum Computer

The role of differential equations (DEs) in science and engineering is of paramount importance, as they provide the mathematical framework for a multitude of natural phenomena. Since quantum computers promise significant advantages over classical computers, quantum algorithms for the solution of DEs have received a lot of attention. Particularly interesting are algorithms that offer advantages […]

Dissipative Variational Quantum Algorithms for Gibbs State Preparation

In recent years, variational quantum algorithms have gained significant attention due to their adaptability and efficiency on near-term quantum hardware. They have shown potential in a variety of tasks, including linear algebra, search problems, Gibbs, and ground state preparation. Nevertheless, the presence of noise in current day quantum hardware severely limits their performance. In this […]

Grover’s Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers

Finding the shortest vector in a lattice is a problem that is believed to be hard both for classical and quantum computers. Many major postquantum secure cryptosystems base their security on the hardness of the shortest vector problem (SVP) (Moody, 2023). Finding the best classical, quantum, or hybrid classical–quantum algorithms for the SVP is necessary […]

Distributionally Robust Variational Quantum Algorithms With Shifted Noise

Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is highly unstable and thus it is likely to shift in real time. This presents a critical […]

Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture

Modern cloud/edge architectures need to orchestrate multiple layers of heterogeneous computing nodes, including pervasive sensors/actuators, distributed edge/fog nodes, centralized data centers, and quantum devices. The optimal assignment and scheduling of computation on the different nodes is a very difficult problem, with NP-hard complexity. In this article, we explore the possibility of solving this problem with […]

Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems

In this article, we propose a postprocessing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-based quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in […]

Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems

In this article, we propose a postprocessing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-based quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]