Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Backtesting Quantum Computing Algorithms for Portfolio Optimization

In portfolio theory, the investment portfolio optimization problem is one of those problems whose complexity grows exponentially with the number of assets. By backtesting classical and quantum computing algorithms, we can get a sense of how these algorithms might perform in the real world. This work establishes a methodology for backtesting classical and quantum algorithms […]

Quantum Algorithm for Position Weight Matrix Matching

In this article, we propose two quantum algorithms for a problem in bioinformatics, position weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence, such as DNA and protein that have high scores defined by the PWM and are, thus, of informational importance related to biological function. The two proposed […]

Pricing Multi-Asset Derivatives by Finite-Difference Method on a Quantum Computer

Following the recent great advance of quantum computing technology, there are growing interests in its applications to industries, including finance. In this article, we focus on derivative pricing based on solving the Black–Scholes partial differential equation by the finite-difference method (FDM), which is a suitable approach for some types of derivatives but suffers from the […]

Quantum Radon Transforms and Their Applications

This article extends the Radon transform, a classical image-processing tool for fast tomography and denoising, to the quantum computing platform. A new kind of periodic discrete Radon transform (PDRT), called the quantum periodic discrete Radon transform (QPRT), is proposed. The quantum implementation of QPRT based on the amplitude encoding method is exponentially faster than the […]

A Grover Search-Based Algorithm for the List Coloring Problem

Graph coloring is a computationally difficult problem, and currently the best known classical algorithm for k -coloring of graphs on n vertices has runtimes Ω(2n) for k≥5 . The list coloring problem asks the following more general question: given a list of available colors for each vertex in a graph, does it admit a proper coloring? We propose a hybrid classical-quantum algorithm based […]

Topological-Graph Dependencies and Scaling Properties of a Heuristic Qubit-Assignment Algorithm

The qubit-mapping problem aims to assign and route qubits of a quantum circuit onto an noisy intermediate-scale quantum (NISQ) device in an optimized fashion, with respect to some cost function. Finding an optimal solution to this problem is known to scale exponentially in computational complexity; as such, it is imperative to investigate scalable qubit-mapping solutions […]

Pulse-Engineered Controlled-V Gate and Its Applications on Superconducting Quantum Device

In this article, we demonstrate that, by employing the OpenPulse design kit for IBM superconducting quantum devices, the controlled-V gate ( cv gate) can be implemented in about half the gate time to the controlled-X gate ( cx or cnot gate) and consequently 65.5% reduced gate time compared to the cx -based implementation of cv […]

A Distributed Learning Scheme for Variational Quantum Algorithms

Variational quantum algorithms (VQAs) are prime contenders to gain computational advantages over classical algorithms using near-term quantum machines. As such, many endeavors have been made to accelerate the optimization of modern VQAs in past years. To further improve the capability of VQAs, here, we propose a quantum distributed optimization scheme (dubbed as QUDIO), whose back […]

The Optimization and Application of 3-Bit Hermitian Gates and Multiple Control Toffoli Gates

The well-known 3-bit Hermitian gate (a Toffoli gate) has been implemented using Clifford+T circuits. Compared with the Peres gate, its implementation circuit requires more controlled- not (cnot) gates. However, the Peres gate is not Hermitian. This article reports four 3-bit Hermitian gates named LI gates, whose realized circuits have the same T-count, T-depth, and cnot […]