Distributionally Robust Variational Quantum Algorithms With Shifted Noise

Given their potential to demonstrate near-term quantum advantage, variational quantum algorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is highly unstable and thus it is likely to shift in real time. This presents a critical […]

Variational Quantum Algorithms for the Allocation of Resources in a Cloud/Edge Architecture

Modern cloud/edge architectures need to orchestrate multiple layers of heterogeneous computing nodes, including pervasive sensors/actuators, distributed edge/fog nodes, centralized data centers, and quantum devices. The optimal assignment and scheduling of computation on the different nodes is a very difficult problem, with NP-hard complexity. In this article, we explore the possibility of solving this problem with […]

Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems

In this article, we propose a postprocessing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-based quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in […]

Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems

In this article, we propose a postprocessing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-based quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Backtesting Quantum Computing Algorithms for Portfolio Optimization

In portfolio theory, the investment portfolio optimization problem is one of those problems whose complexity grows exponentially with the number of assets. By backtesting classical and quantum computing algorithms, we can get a sense of how these algorithms might perform in the real world. This work establishes a methodology for backtesting classical and quantum algorithms […]

Backtesting Quantum Computing Algorithms for Portfolio Optimization

In portfolio theory, the investment portfolio optimization problem is one of those problems whose complexity grows exponentially with the number of assets. By backtesting classical and quantum computing algorithms, we can get a sense of how these algorithms might perform in the real world. This work establishes a methodology for backtesting classical and quantum algorithms […]

Quantum Algorithm for Position Weight Matrix Matching

In this article, we propose two quantum algorithms for a problem in bioinformatics, position weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence, such as DNA and protein that have high scores defined by the PWM and are, thus, of informational importance related to biological function. The two proposed […]