A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity

Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to […]

A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity

Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to […]

A Low-Complexity Quantum Principal Component Analysis Algorithm

In this article, we propose a low-complexity quantum principal component analysis (qPCA) algorithm. Similar to the state-of-the-art qPCA, it achieves dimension reduction by extracting principal components of the data matrix, rather than all components of the data matrix, to quantum registers, so that the samples of measurement required can be reduced considerably. Both our qPCA […]