A Modular Quantum Compilation Framework for Distributed Quantum Computing

For most practical applications, quantum algorithms require large resources in terms of qubit number, much larger than those available with current noisy intermediate-scale quantum processors. With the network and communication functionalities provided by the quantum Internet, distributed quantum computing (DQC) is considered as a scalable approach for increasing the number of available qubits for computational […]

Experimentally Verified, Fast Analytic, and Numerical Design of Superconducting Resonators in Flip-Chip Architectures

In superconducting quantum processors, the predictability of device parameters is of increasing importance as many laboratories scale up their systems to larger sizes in a 3-D-integrated architecture. In particular, the properties of superconducting resonators must be controlled well to ensure high-fidelity multiplexed readout of qubits. Here, we present a method, based on conformal mapping techniques, […]

Machine-Learning-Based Qubit Allocation for Error Reduction in Quantum Circuits

Quantum computing is a quickly growing field with great potential for future technology. Quantum computers in the current noisy intermediate-scale quantum (NISQ) era face two major limitations:1) qubit count and 2) error vulnerability. Although quantum error correction methods exist, they are not applicable to the current size of computers, requiring thousands of qubits, while current […]

Cryogenic Embedded System to Support Quantum Computing: From 5-nm FinFET to Full Processor

Quantum computing can enable novel algorithms infeasible for classical computers. For example, new material synthesis and drug optimization could benefit if quantum computers offered more quantum bits (qubits). One obstacle for scaling up quantum computers is the connection between their cryogenic qubits at temperatures between a few millikelvin and a few kelvin (depending on qubit […]

Extensible Gauge-Invariant FDM With Spin–Orbit Coupling for Quantum Devices

We present a novel derivation and implementation of the finite-difference method (FDM) that is gauge invariant and incorporates spin–orbit coupling for the study of quantum systems. This version of FDM is meant to assist in the design and simulation of quantum devices that utilize multiple internal degrees of freedom (e.g., spin) by providing a way […]

Enabling Efficient Real-Time Calibration on Cloud Quantum Machines

Noisy intermediate-scale quantum computers are widely used for quantum computing (QC) from quantum cloud providers. Among them, superconducting quantum computers, with their high scalability and mature processing technology based on traditional silicon-based chips, have become the preferred solution for most commercial companies and research institutions to develop QC. However, superconducting quantum computers suffer from fluctuation […]

Design and Analysis of Digital Communication Within an SoC-Based Control System for Trapped-Ion Quantum Computing

Large-scale quantum information processing requires the use of quantum error-correcting codes to mitigate the effects of noise in quantum devices. Topological error-correcting codes, such as surface codes, are promising candidates, as they can be implemented using only local interactions in a 2-D array of physical qubits. Procedures, such as defect braiding and lattice surgery, can […]

Variational Quantum Optimization of Nonlocality in Noisy Quantum Networks

The noise and complexity inherent to quantum communication networks leads to technical challenges in designing quantum network protocols using classical methods. We address this issue with a hybrid variational quantum optimization (VQO) framework that simulates quantum networks on quantum hardware and optimizes the simulation using differential programming. We maximize nonlocality in noisy quantum networks to […]

Hardness of Braided Quantum Circuit Optimization in the Surface Code

Large-scale quantum information processing requires the use of quantum error-correcting codes to mitigate the effects of noise in quantum devices. Topological error-correcting codes, such as surface codes, are promising candidates, as they can be implemented using only local interactions in a 2-D array of physical qubits. Procedures, such as defect braiding and lattice surgery, can […]

On the Logical Error Rate of Sparse Quantum Codes

The quantum paradigm presents a phenomenon known as degeneracy that can potentially improve the performance of quantum error correcting codes. However, the effects of this mechanism are sometimes ignored when evaluating the performance of sparse quantum codes and the logical error rate is not always correctly reported. In this article, we discuss previously existing methods […]