Solving the Max-Flow Problem on a Quantum Annealing Computer

This article addresses the question of implementing a maximum flow algorithm on directed graphs in a formulation suitable for a quantum annealing computer. Three distinct approaches are presented. In all three cases, the flow problem is formulated as a quadratic unconstrained binary optimization (QUBO) problem amenable to quantum annealing. The first implementation augments a graph […]

Quantum Computing for Finance: State-of-the-Art and Future Prospects

This article outlines our point of view regarding the applicability, state-of-the-art, and potential of quantum computing for problems in finance. We provide an introduction to quantum computing as well as a survey on problem classes in finance that are computationally challenging classically and for which quantum computing algorithms are promising. In the main part, we […]

Theory of Quantum Computation With Magnetic Clusters

We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define […]

Quantum Computer Architecture Toward Full-Stack Quantum Accelerators

This article presents the definition and implementation of a quantum computer architecture to enable creating a new computational device-a quantum computer as an accelerator. A key question addressed is what such a quantum computer is and how it relates to the classical processor that controls the entire execution process. In this article, we present explicitly […]

Enhancing a Near-Term Quantum Accelerator’s Instruction Set Architecture for Materials Science Applications

Quantum computers with tens to hundreds of noisy qubits are being developed today. To be useful for real-world applications, we believe that these near-term systems cannot simply be scaled-down non-error-corrected versions of future fault-tolerant large-scale quantum computers. These near-term systems require specific architecture and design attributes to realize their full potential. To efficiently execute an […]

Decoding Quantum Error Correction Codes With Local Variation

In this article, we investigate the role of local information in the decoding of the repetition and surface error correction codes for the protection of quantum states. Our key result is an improvement in resource efficiency when local information is taken into account during the decoding process: the code distance associated with a given logical […]

Fault-Tolerant Resource Estimation of Quantum Random-Access Memories

Quantum random-access lookup of a string of classical bits is a necessary ingredient in several important quantum algorithms. In some cases, the cost of such quantum random-access memory (qRAM) is the limiting factor in the implementation of the algorithm. In this article, we study the cost of fault-tolerantly implementing a qRAM. We construct and analyze […]

Reducing the Cost of Implementing the Advanced Encryption Standard as a Quantum Circuit

To quantify security levels in a postquantum scenario, it is common to use the quantum resources needed to attack the Advanced Encryption Standard (AES) as a reference value. Specifically, in the National Institute of Standards and Technology’s ongoing postquantum standardization effort, different security categories are defined that reflect the quantum resources needed to attack AES-128, […]