Quantum Bloom Filter and Its Applications

A quantum Bloom filter is a spatially more efficient data structure which is used to represent a set of n elements by using O(lognk) qubits. In this article, we define and design a quantum Bloom filter and its corresponding algorithms. Due to the reversibility of quantum operators, it can not only add a new element to a quantum Bloom […]

Compiler Design for Distributed Quantum Computing

In distributed quantum computing architectures, with the network and communications functionalities provided by the Quantum Internet, remote quantum processing units can communicate and cooperate for executing computational tasks that single, noisy, intermediate-scale quantum devices cannot handle by themselves. To this aim, distributed quantum computing requires a new generation of quantum compilers, for mapping any quantum […]

Benchmarking Hamiltonian Noise in the D-Wave Quantum Annealer

Various sources of noise limit the performance of quantum computers by altering qubit states in an uncontrolled manner throughout computations and reducing their coherence time. In quantum annealers, this noise introduces additional fluctuations to the parameters defining the original problem Hamiltonian, such that they find the ground states of problems perturbed from those originally programmed. […]

Josephson Microwave Sources Applied to Quantum Information Systems

Quantum computers with thousands or millions of qubits will require a scalable solution for qubit control and readout electronics. Colocating these electronics at millikelvin temperatures has been proposed and demonstrated, but there exist significant challenges with power dissipation, reproducibility, fidelity, and scalability. In this article, we experimentally demonstrate the use of a Josephson arbitrary waveform […]

Finding Small and Large k-Clique Instances on a Quantum Computer

Algorithms for triangle finding, the smallest nontrivial instance of the k -clique problem, have been proposed for quantum computers. Still, those algorithms assume the use of fixed access time quantum RAM. In this article, we present a practical gate-based approach to both the triangle-finding problem and its NP-hard k -clique generalization. We examine both constant factors for near-term implementation […]

High-Fidelity Control of Superconducting Qubits Using Direct Microwave Synthesis in Higher Nyquist Zones

Control electronics for superconducting quantum processors have strict requirements for accurate command of the sensitive quantum states of their qubits. Hinging on the purity of ultra-phase-stable oscillators to upconvert very-low-noise baseband pulses, conventional control systems can become prohibitively complex and expensive when scaling to larger quantum devices, especially as high sampling rates become desirable for […]

Preparing Dicke States on a Quantum Computer

Exact requirement of controlled NOT (CNOT) and single-qubit gates to implement a quantum algorithm in a given architecture is one of the central problems in this computational paradigm. In this article, we take a tutorial approach in explaining the preparation of Dicke states (|D k n 〉) using concise realizations of partially defined unitary transformations. We show how […]

O(N^3) Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians

Variational quantum eigensolver (VQE) is a promising algorithm for near-term quantum machines. It can be used to estimate the ground state energy of a molecule by performing separate measurements of O(N 4 ) terms. This quartic scaling appears to be a significant obstacle to practical applications. However, we note that it empirically reduces to O(N 3 ) when we […]

Quantum Approximate Optimization With Parallelizable Gates

The quantum approximate optimization algorithm (QAOA) has been introduced as a heuristic digital quantum computing scheme to find approximate solutions of combinatorial optimization problems. We present a scheme to parallelize this approach for arbitrary all-to-all connected problem graphs in a layout of quantum bits (qubits) with nearest-neighbor interactions. The protocol consists of single qubit operations […]

Voltage-Tunable Superconducting Resonators: A Platform for Random Access Quantum Memory

In computing architectures, one important factor is the tradeoff between the need to couple bits of information (quantum or classical) to each other and to an external drive and the need to isolate them well enough in order to protect the information for an extended period of time. In the case of superconducting quantum circuits, […]