Spatiotemporal Multiplexed Rydberg Receiver

Rydberg states of alkali atoms, where the outer valence electron is excited to high principal quantum numbers, have large electric dipole moments allowing them to be used as sensitive, wideband, electric field sensors. These sensors use electromagnetically induced transparency (EIT) to measure incident electric fields. The characteristic timescale necessary to establish EIT determines the effective […]

Quantum Control of Optically Active Artificial Atoms With Surface Acoustic Waves

Surface acoustic waves (SAWs) are a versatile tool for realizing coherent quantum interfaces between various solid-state qubits spanning microwave to optical frequencies. Through strain, electric, or magnetic fields associated with acoustic waves, qubit states can be controlled and measured with exquisite precision for applications in quantum information processing, memory, transduction, and sensing. In this review, […]

Quantum Engineering With Hybrid Magnonic Systems and Materials (Invited Paper)

Quantum technology has made tremendous strides over the past two decades with remarkable advances in materials engineering, circuit design, and dynamic operation. In particular, the integration of different quantum modules has benefited from hybrid quantum systems, which provide an important pathway for harnessing different natural advantages of complementary quantum systems and for engineering new functionalities. […]

Hybrid Dissipative and Dispersive Optomechanically Induced Transparency

Traditionally, the optical interference and energy conversion could be modulated by dissipation and dispersion in nonlinear optomechanical systems. Here, in this article, we study the enhancement of dissipative coupling on transparency under generalized optomechanical coupling and theoretically illustrate the generation of optomechanically induced transparency with gain and interference tuning. It enables the enhancement of the […]

Voltage-Tunable Superconducting Resonators: A Platform for Random Access Quantum Memory

In computing architectures, one important factor is the tradeoff between the need to couple bits of information (quantum or classical) to each other and to an external drive and the need to isolate them well enough in order to protect the information for an extended period of time. In the case of superconducting quantum circuits, […]