Experimentally Verified, Fast Analytic, and Numerical Design of Superconducting Resonators in Flip-Chip Architectures

In superconducting quantum processors, the predictability of device parameters is of increasing importance as many laboratories scale up their systems to larger sizes in a 3-D-integrated architecture. In particular, the properties of superconducting resonators must be controlled well to ensure high-fidelity multiplexed readout of qubits. Here, we present a method, based on conformal mapping techniques, […]

Quantum Engineering With Hybrid Magnonic Systems and Materials (Invited Paper)

Quantum technology has made tremendous strides over the past two decades with remarkable advances in materials engineering, circuit design, and dynamic operation. In particular, the integration of different quantum modules has benefited from hybrid quantum systems, which provide an important pathway for harnessing different natural advantages of complementary quantum systems and for engineering new functionalities. […]

Theory of Quantum Computation With Magnetic Clusters

We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define […]