Emulation of Density Matrix Dynamics With Classical Analog Circuits

Analog circuits have emerged as a valuable quantum emulation and simulation platform. Specifically, they have been experimentally shown to excel in emulating coherent state vector dynamics and motifs of quantum circuits, such as the quantum Fourier transform, tensor product superpositions, two-level systems such as Josephson junctions, and nuclear magnetic resonance state dynamics, all on a […]

Emulation of Quantum Algorithms Using CMOS Analog Circuits

Quantum computers are regarded as the future of computing, as they are believed to be capable of solving extremely complex problems that are intractable on conventional digital computers. However, near-term quantum computers are prone to a plethora of noise sources that are difficult to mitigate, possibly limiting their scalability and precluding us from running any […]

A Software Development Kit and Translation Layer for Executing Intel 8080 Assembler on a Quantum Computer (August 2022)

One of the major obstacles to the adoption of quantum computing is the requirement to define quantum circuits at the quantum gate level. Many programmers are familiar with high-level or low-level programming languages but not quantum gates nor the low-level quantum logic required to derive useful results from quantum computers. The steep learning curve involved […]