Finding Small and Large k-Clique Instances on a Quantum Computer

Algorithms for triangle finding, the smallest nontrivial instance of the k -clique problem, have been proposed for quantum computers. Still, those algorithms assume the use of fixed access time quantum RAM. In this article, we present a practical gate-based approach to both the triangle-finding problem and its NP-hard k -clique generalization. We examine both constant factors for near-term implementation […]

High-Fidelity Control of Superconducting Qubits Using Direct Microwave Synthesis in Higher Nyquist Zones

Control electronics for superconducting quantum processors have strict requirements for accurate command of the sensitive quantum states of their qubits. Hinging on the purity of ultra-phase-stable oscillators to upconvert very-low-noise baseband pulses, conventional control systems can become prohibitively complex and expensive when scaling to larger quantum devices, especially as high sampling rates become desirable for […]

Preparing Dicke States on a Quantum Computer

Exact requirement of controlled NOT (CNOT) and single-qubit gates to implement a quantum algorithm in a given architecture is one of the central problems in this computational paradigm. In this article, we take a tutorial approach in explaining the preparation of Dicke states (|D k n 〉) using concise realizations of partially defined unitary transformations. We show how […]

O(N^3) Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians

Variational quantum eigensolver (VQE) is a promising algorithm for near-term quantum machines. It can be used to estimate the ground state energy of a molecule by performing separate measurements of O(N 4 ) terms. This quartic scaling appears to be a significant obstacle to practical applications. However, we note that it empirically reduces to O(N 3 ) when we […]

Quantum Approximate Optimization With Parallelizable Gates

The quantum approximate optimization algorithm (QAOA) has been introduced as a heuristic digital quantum computing scheme to find approximate solutions of combinatorial optimization problems. We present a scheme to parallelize this approach for arbitrary all-to-all connected problem graphs in a layout of quantum bits (qubits) with nearest-neighbor interactions. The protocol consists of single qubit operations […]

Voltage-Tunable Superconducting Resonators: A Platform for Random Access Quantum Memory

In computing architectures, one important factor is the tradeoff between the need to couple bits of information (quantum or classical) to each other and to an external drive and the need to isolate them well enough in order to protect the information for an extended period of time. In the case of superconducting quantum circuits, […]

Solving the Max-Flow Problem on a Quantum Annealing Computer

This article addresses the question of implementing a maximum flow algorithm on directed graphs in a formulation suitable for a quantum annealing computer. Three distinct approaches are presented. In all three cases, the flow problem is formulated as a quadratic unconstrained binary optimization (QUBO) problem amenable to quantum annealing. The first implementation augments a graph […]

Quantum Computing for Finance: State-of-the-Art and Future Prospects

This article outlines our point of view regarding the applicability, state-of-the-art, and potential of quantum computing for problems in finance. We provide an introduction to quantum computing as well as a survey on problem classes in finance that are computationally challenging classically and for which quantum computing algorithms are promising. In the main part, we […]

Theory of Quantum Computation With Magnetic Clusters

We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define […]

Quantum Computer Architecture Toward Full-Stack Quantum Accelerators

This article presents the definition and implementation of a quantum computer architecture to enable creating a new computational device-a quantum computer as an accelerator. A key question addressed is what such a quantum computer is and how it relates to the classical processor that controls the entire execution process. In this article, we present explicitly […]