Improving Probabilistic Error Cancellation in the Presence of Nonstationary Noise

In this article, we investigate the stability of probabilistic error cancellation (PEC) outcomes in the presence of nonstationary noise, which is an obstacle to achieving accurate observable estimates. Leveraging Bayesian methods, we design a strategy to enhance PEC stability and accuracy. Our experiments using a five-qubit implementation of the Bernstein–Vazirani algorithm and conducted on the […]

Simulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS)

Quantum dots (QDs) must be tuned precisely to provide a suitable basis for quantum computation. A scalable platform for quantum computing can only be achieved by fully automating the tuning process. One crucial step is to trap the appropriate number of electrons in the QDs, typically accomplished by analyzing charge stability diagrams (CSDs). Training and […]

Fault-Tolerant One-Way Noiseless Amplification for Microwave Bosonic Quantum Information Processing

Microwave quantum information networks require reliable transmission of single-photon propagating modes over lossy channels. In this article, we propose a microwave noiseless linear amplifier (NLA) suitable to circumvent the losses incurred by a flying photon undergoing an amplitude damping channel (ADC). The proposed model is constructed by engineering a simple 1-D four-node cluster state. Contrary […]

BeSnake: A Routing Algorithm for Scalable Spin-Qubit Architectures

As quantum computing devices increase in size with respect to the number of qubits, two-qubit interactions become more challenging, necessitating innovative and scalable qubit routing solutions. In this work, we introduce beSnake, a novel algorithm specifically designed to address the intricate qubit routing challenges in scalable spin-qubit architectures. Unlike traditional methods in superconducting architectures that […]

FASQuiC: Flexible Architecture for Scalable Spin Qubit Control

As scaling becomes a key issue for large-scale quantum computing, hardware control systems will become increasingly costly in resources. This article presents a compact direct digital synthesis architecture for signal generation adapted for spin qubits that is scalable in terms of waveform accuracy and the number of synchronized channels. The architecture can produce programmable combinations […]

Advanced Shuttle Strategies for Parallel QCCD Architectures

Trapped ions (TIs) are at the forefront of quantum computing implementation, offering unparalleled coherence, fidelity, and connectivity. However, the scalability of TI systems is hampered by the limited capacity of individual ion traps, necessitating intricate ion shuttling for advanced computational tasks. The quantum charge-coupled device (QCCD) framework has emerged as a promising solution, facilitating ion […]

Scalable Full-Stack Benchmarks for Quantum Computers

Quantum processors are now able to run quantum circuits that are infeasible to simulate classically, creating a need for benchmarks that assess a quantum processor’s rate of errors when running these circuits. Here, we introduce a general technique for creating efficient benchmarks from any set of quantum computations, specified by unitary circuits. Our benchmarks assess […]

Harnessing the Power of Long-Range Entanglement for Clifford Circuit Synthesis

In superconducting architectures, limited connectivity remains a significant challenge for the synthesis and compilation of quantum circuits. We consider models of entanglement-assisted computation where long-range operations are achieved through injections of large Greenberger–Horne–Zeilinger (GHZ) states. These are prepared using ancillary qubits acting as an “entanglement bus,” unlocking global operation primitives such as multiqubit Pauli rotations […]

Accelerating Grover Adaptive Search: Qubit and Gate Count Reduction Strategies With Higher Order Formulations

Grover adaptive search (GAS) is a quantum exhaustive search algorithm designed to solve binary optimization problems. In this article, we propose higher order binary formulations that can simultaneously reduce the numbers of qubits and gates required for GAS. Specifically, we consider two novel strategies: one that reduces the number of gates through polynomial factorization, and […]

A Comparative Study on Solving Optimization Problems With Exponentially Fewer Qubits

Variational quantum optimization algorithms, such as the variational quantum eigensolver (VQE) or the quantum approximate optimization algorithm (QAOA), are among the most studied quantum algorithms. In our work, we evaluate and improve an algorithm based on the VQE, which uses exponentially fewer qubits compared to the QAOA. We highlight the numerical instabilities generated by encoding […]