Accelerating Grover Adaptive Search: Qubit and Gate Count Reduction Strategies With Higher Order Formulations

Grover adaptive search (GAS) is a quantum exhaustive search algorithm designed to solve binary optimization problems. In this article, we propose higher order binary formulations that can simultaneously reduce the numbers of qubits and gates required for GAS. Specifically, we consider two novel strategies: one that reduces the number of gates through polynomial factorization, and […]

A Comparative Study on Solving Optimization Problems With Exponentially Fewer Qubits

Variational quantum optimization algorithms, such as the variational quantum eigensolver (VQE) or the quantum approximate optimization algorithm (QAOA), are among the most studied quantum algorithms. In our work, we evaluate and improve an algorithm based on the VQE, which uses exponentially fewer qubits compared to the QAOA. We highlight the numerical instabilities generated by encoding […]

Probing Quantum Telecloning on Superconducting Quantum Processors

Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on […]

Modeling and Experimental Validation of the Intrinsic SNR in Spin Qubit Gate-Based Readout and Its Impacts on Readout Electronics

In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This article introduces a theoretical framework to evaluate the effect of various parameters, such as the readout probe power, […]

Simulating Quantum Field Theories on Gate-Based Quantum Computers

We implement a simulation of a quantum field theory in 1+1 space–time dimensions on a gate-based quantum computer using the light-front formulation of the theory. The nonperturbative simulation of the Yukawa model field theory is verified on IBM’s simulator and is also demonstrated on a small-scale IBM circuit-based quantum processor, on the cloud, using IBM […]

Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems

In this article, we propose a postprocessing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-based quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in […]

Testing and Debugging Quantum Circuits

This article introduces a process framework for debugging quantum circuits, focusing on three distinct types of circuit blocks: amplitude–permutation, phase-modulation, and amplitude–redistribution circuit blocks. Our research addresses the critical need for specialized debugging approaches tailored to the unique properties of each circuit type. For amplitude–permutation circuits, we propose techniques to correct amplitude–permutations mimicking classical operations. […]

Testing and Debugging Quantum Circuits

This article introduces a process framework for debugging quantum circuits, focusing on three distinct types of circuit blocks: amplitude–permutation, phase-modulation, and amplitude–redistribution circuit blocks. Our research addresses the critical need for specialized debugging approaches tailored to the unique properties of each circuit type. For amplitude–permutation circuits, we propose techniques to correct amplitude–permutations mimicking classical operations. […]

A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity

Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to […]

A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity

Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to […]