Shor’s Algorithm Using Efficient Approximate Quantum Fourier Transform

Shor’s algorithm solves the integer factoring and discrete logarithm problems in polynomial time. Therefore, the evaluation of Shor’s algorithm is essential for evaluating the security of currently used public-key cryptosystems because the integer factoring and discrete logarithm problems are crucial for the security of these cryptosystems. In this article, a new approximate quantum Fourier transform […]

Approaching Collateral Optimization for NISQ and Quantum-Inspired Computing (May 2023)

Collateral optimization refers to the systematic allocation of financial assets to satisfy obligations or secure transactions while simultaneously minimizing costs and optimizing the usage of available resources. This involves assessing the number of characteristics, such as the cost of funding and quality of the underlying assets to ascertain the optimal collateral quantity to be posted […]

Quantum Algorithm for Position Weight Matrix Matching

In this article, we propose two quantum algorithms for a problem in bioinformatics, position weight matrix (PWM) matching, which aims to find segments (sequence motifs) in a biological sequence, such as DNA and protein that have high scores defined by the PWM and are, thus, of informational importance related to biological function. The two proposed […]

Qubit Reduction and Quantum Speedup for Wireless Channel Assignment Problem

In this article, we propose a novel method of formulating an NP-hard wireless channel assignment problem as a higher-order unconstrained binary optimization (HUBO), where the Grover adaptive search (GAS) is used to provide a quadratic speedup for solving the problem. The conventional method relies on a one-hot encoding of the channel indices, resulting in a […]

Testing Platform-Independent Quantum Error Mitigation on Noisy Quantum Computers

We apply quantum error mitigation (QEM) techniques to a variety of benchmark problems and quantum computers to evaluate the performance of QEM in practice. To do so, we define an empirically motivated, resource-normalized metric of the improvement of error mitigation, which we call the improvement factor, and calculate this metric for each experiment we perform. […]

Analysis of the Vehicle Routing Problem Solved via Hybrid Quantum Algorithms in the Presence of Noisy Channels

The vehicle routing problem (VRP) is an NP-hard optimization problem that has been an interest of research for decades in science and industry. The objective is to plan routes of vehicles to deliver goods to a fixed number of customers with optimal efficiency. Classical tools and methods provide good approximations to reach the optimal global […]

Experimentally Verified, Fast Analytic, and Numerical Design of Superconducting Resonators in Flip-Chip Architectures

In superconducting quantum processors, the predictability of device parameters is of increasing importance as many laboratories scale up their systems to larger sizes in a 3-D-integrated architecture. In particular, the properties of superconducting resonators must be controlled well to ensure high-fidelity multiplexed readout of qubits. Here, we present a method, based on conformal mapping techniques, […]

Machine-Learning-Based Qubit Allocation for Error Reduction in Quantum Circuits

Quantum computing is a quickly growing field with great potential for future technology. Quantum computers in the current noisy intermediate-scale quantum (NISQ) era face two major limitations:1) qubit count and 2) error vulnerability. Although quantum error correction methods exist, they are not applicable to the current size of computers, requiring thousands of qubits, while current […]

Cryogenic Embedded System to Support Quantum Computing: From 5-nm FinFET to Full Processor

Quantum computing can enable novel algorithms infeasible for classical computers. For example, new material synthesis and drug optimization could benefit if quantum computers offered more quantum bits (qubits). One obstacle for scaling up quantum computers is the connection between their cryogenic qubits at temperatures between a few millikelvin and a few kelvin (depending on qubit […]

Enabling Efficient Real-Time Calibration on Cloud Quantum Machines

Noisy intermediate-scale quantum computers are widely used for quantum computing (QC) from quantum cloud providers. Among them, superconducting quantum computers, with their high scalability and mature processing technology based on traditional silicon-based chips, have become the preferred solution for most commercial companies and research institutions to develop QC. However, superconducting quantum computers suffer from fluctuation […]