Backtesting Quantum Computing Algorithms for Portfolio Optimization

In portfolio theory, the investment portfolio optimization problem is one of those problems whose complexity grows exponentially with the number of assets. By backtesting classical and quantum computing algorithms, we can get a sense of how these algorithms might perform in the real world. This work establishes a methodology for backtesting classical and quantum algorithms […]

Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors

The light’s image is the primary source of information carrier in nature. Indeed, a single photon’s image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed […]

Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors

The light’s image is the primary source of information carrier in nature. Indeed, a single photon’s image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed […]

Quantum Approximate Bayesian Optimization Algorithms With Two Mixers and Uncertainty Quantification

The searching efficiency of the quantum approximate optimization algorithm is dependent on both the classical and quantum sides of the algorithm. Recently, a quantum approximate Bayesian optimization algorithm (QABOA) that includes two mixers was developed, where surrogate-based Bayesian optimization is applied to improve the sampling efficiency of the classical optimizer. A continuous-time quantum walk mixer […]

Emulation of Quantum Algorithms Using CMOS Analog Circuits

Quantum computers are regarded as the future of computing, as they are believed to be capable of solving extremely complex problems that are intractable on conventional digital computers. However, near-term quantum computers are prone to a plethora of noise sources that are difficult to mitigate, possibly limiting their scalability and precluding us from running any […]

Hybrid Quantum–Classical Generative Adversarial Network for High-Resolution Image Generation

Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in problems, such as classification and identification tasks. A subclass of QML methods is quantum generative adversarial networks (QGANs), which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation […]

Approaching Collateral Optimization for NISQ and Quantum-Inspired Computing (May 2023)

Collateral optimization refers to the systematic allocation of financial assets to satisfy obligations or secure transactions while simultaneously minimizing costs and optimizing the usage of available resources. This involves assessing the number of characteristics, such as the cost of funding and quality of the underlying assets to ascertain the optimal collateral quantity to be posted […]

Corrections to “The Present and Future of Discrete Logarithm Problems on Noisy Quantum Computers”

Presents corrections to the article “The Present and Future of Discrete Logarithm Problems on Noisy Quantum Computers”. For more about this article see link below. https://ieeexplore.ieee.org/document/10185464 For the open access PDF link of this article please click.

Testing Platform-Independent Quantum Error Mitigation on Noisy Quantum Computers

We apply quantum error mitigation (QEM) techniques to a variety of benchmark problems and quantum computers to evaluate the performance of QEM in practice. To do so, we define an empirically motivated, resource-normalized metric of the improvement of error mitigation, which we call the improvement factor, and calculate this metric for each experiment we perform. […]

Analysis of the Vehicle Routing Problem Solved via Hybrid Quantum Algorithms in the Presence of Noisy Channels

The vehicle routing problem (VRP) is an NP-hard optimization problem that has been an interest of research for decades in science and industry. The objective is to plan routes of vehicles to deliver goods to a fixed number of customers with optimal efficiency. Classical tools and methods provide good approximations to reach the optimal global […]