Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems

In this article, we propose a postprocessing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-based quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in […]

Testing and Debugging Quantum Circuits

This article introduces a process framework for debugging quantum circuits, focusing on three distinct types of circuit blocks: amplitude–permutation, phase-modulation, and amplitude–redistribution circuit blocks. Our research addresses the critical need for specialized debugging approaches tailored to the unique properties of each circuit type. For amplitude–permutation circuits, we propose techniques to correct amplitude–permutations mimicking classical operations. […]

Testing and Debugging Quantum Circuits

This article introduces a process framework for debugging quantum circuits, focusing on three distinct types of circuit blocks: amplitude–permutation, phase-modulation, and amplitude–redistribution circuit blocks. Our research addresses the critical need for specialized debugging approaches tailored to the unique properties of each circuit type. For amplitude–permutation circuits, we propose techniques to correct amplitude–permutations mimicking classical operations. […]

Quantum Fuzzy Inference Engine for Particle Accelerator Control

Recently, quantum computing has been proven as an ideal theory for the design of fuzzy inference engines, thanks to its capability to efficiently solve the rule explosion problem. In this scenario, a quantum fuzzy inference engine (QFIE) was proposed as a quantum algorithm able to generate an exponential computational advantage over conventional fuzzy inference engines. […]

Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks

Quanvolutional neural networks (QNNs) have been successful in image classification, exploiting inherent quantum capabilities to improve performance of traditional convolution. Unfortunately, the qubit’s reliability can be a significant issue for QNNs inference, since its logical state can be altered by both intrinsic noise and by the interaction with natural radiation. In this article, we aim […]

Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks

Quanvolutional Neural Networks (QNNs) have been successful in image classification, exploiting inherent quantum capabilities to improve performance of the traditional convolution. Unfortunately, the qubit’s reliability can be a significant issue for QNNs inference, since its logical state can be altered by both intrinsic noise and by the interaction with natural radiation. In this paper we […]

A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity

Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to […]

Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors

The light’s image is the primary source of information carrier in nature. Indeed, a single photon’s image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed […]

A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity

Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to […]

Parallelizing Quantum Simulation With Decision Diagrams

Since people became aware of the power of quantum phenomena in the domain of traditional computation, a great number of complex problems that were once considered intractable in the classical world have been tackled. The downsides of quantum supremacy are its high cost and unpredictability. Numerous researchers are relying on quantum simulators running on classical […]