BeSnake: A Routing Algorithm for Scalable Spin-Qubit Architectures

As quantum computing devices increase in size with respect to the number of qubits, two-qubit interactions become more challenging, necessitating innovative and scalable qubit routing solutions. In this work, we introduce beSnake, a novel algorithm specifically designed to address the intricate qubit routing challenges in scalable spin-qubit architectures. Unlike traditional methods in superconducting architectures that […]

FASQuiC: Flexible Architecture for Scalable Spin Qubit Control

As scaling becomes a key issue for large-scale quantum computing, hardware control systems will become increasingly costly in resources. This article presents a compact direct digital synthesis architecture for signal generation adapted for spin qubits that is scalable in terms of waveform accuracy and the number of synchronized channels. The architecture can produce programmable combinations […]

Advanced Shuttle Strategies for Parallel QCCD Architectures

Trapped ions (TIs) are at the forefront of quantum computing implementation, offering unparalleled coherence, fidelity, and connectivity. However, the scalability of TI systems is hampered by the limited capacity of individual ion traps, necessitating intricate ion shuttling for advanced computational tasks. The quantum charge-coupled device (QCCD) framework has emerged as a promising solution, facilitating ion […]

Harnessing the Power of Long-Range Entanglement for Clifford Circuit Synthesis

In superconducting architectures, limited connectivity remains a significant challenge for the synthesis and compilation of quantum circuits. We consider models of entanglement-assisted computation where long-range operations are achieved through injections of large Greenberger–Horne–Zeilinger (GHZ) states. These are prepared using ancillary qubits acting as an “entanglement bus,” unlocking global operation primitives such as multiqubit Pauli rotations […]

Network Anomaly Detection Using Quantum Neural Networks on Noisy Quantum Computers

The escalating threat and impact of network-based attacks necessitate innovative intrusion detection systems. Machine learning has shown promise, with recent strides in quantum machine learning offering new avenues. However, the potential of quantum computing is tempered by challenges in current noisy intermediate-scale quantum era machines. In this article, we explore quantum neural networks (QNNs) for […]

A Proposed Quantum Framework for Low-Complexity Quantum Simulation and Spectrum Estimation of Hankel-Patterned Systems

The structured matrix completion problem (SMCP) is ubiquitous in several signal processing applications. In this article, we consider a fixed pattern, namely, the Hankel-structure for the SMCP under quantum formalism. By exploiting its structure, a lower-gate-complexity quantum circuit realization of a Hankel system is demonstrated. Further, we propose a quantum simulation algorithm for the Hankel-structured […]

Spatiotemporal Multiplexed Rydberg Receiver

Rydberg states of alkali atoms, where the outer valence electron is excited to high principal quantum numbers, have large electric dipole moments allowing them to be used as sensitive, wideband, electric field sensors. These sensors use electromagnetically induced transparency (EIT) to measure incident electric fields. The characteristic timescale necessary to establish EIT determines the effective […]

A Modular Quantum Compilation Framework for Distributed Quantum Computing

For most practical applications, quantum algorithms require large resources in terms of qubit number, much larger than those available with current noisy intermediate-scale quantum processors. With the network and communication functionalities provided by the quantum Internet, distributed quantum computing (DQC) is considered as a scalable approach for increasing the number of available qubits for computational […]

Versatile and Concurrent FPGA-Based Architecture for Practical Quantum Communication Systems

This article presents a hardware and software architecture, which can be used in those systems that implement practical quantum key distribution (QKD) and quantum random-number generation (QRNG) schemes. This architecture fully exploits the capability of a System on a Chip (SoC), which comprehends both a field-programmable gate array (FPGA) and a dual-core CPU unit. By […]

Timing Constraints Imposed by Classical Digital Control Systems on Photonic Implementations of Measurement-Based Quantum Computing

Most of the architectural research on photonic implementations of measurement-based quantum computing (MBQC) has focused on the quantum resources involved in the problem with the implicit assumption that these will provide the main constraints on system scaling. However, the “flying-qubit” architecture of photonic MBQC requires specific timing constraints that need to be met by the […]