BeSnake: A Routing Algorithm for Scalable Spin-Qubit Architectures

As quantum computing devices increase in size with respect to the number of qubits, two-qubit interactions become more challenging, necessitating innovative and scalable qubit routing solutions. In this work, we introduce beSnake, a novel algorithm specifically designed to address the intricate qubit routing challenges in scalable spin-qubit architectures. Unlike traditional methods in superconducting architectures that […]

Multiobjective Optimization and Network Routing With Near-Term Quantum Computers

Multiobjective optimization is a ubiquitous problem that arises naturally in many scientific and industrial areas. Network routing optimization with multiobjective performance demands falls into this problem class, and finding good quality solutions at large scales is generally challenging. In this work, we develop a scheme with which near-term quantum computers can be applied to solve […]

On the Bipartite Entanglement Capacity of Quantum Networks

We consider the problem of multipath entanglement distribution to a pair of nodes in a quantum network consisting of devices with nondeterministic entanglement swapping capabilities. Multipath entanglement distribution enables a network to establish end-to-end entangled links across any number of available paths with preestablished link-level entanglement. Probabilistic entanglement swapping, on the other hand, limits the […]

Multiuser Entanglement Distribution in Quantum Networks Using Multipath Routing

Quantum networks facilitate numerous applications including secure communication and distributed quantum computation by performing entanglement distribution. For some multiuser quantum applications, access to a shared multipartite state is required. We consider the problem of designing protocols for distributing such states, at an increased rate. For this, we propose three protocols that leverage multipath routing to […]

Machine-Learning-Based Qubit Allocation for Error Reduction in Quantum Circuits

Quantum computing is a quickly growing field with great potential for future technology. Quantum computers in the current noisy intermediate-scale quantum (NISQ) era face two major limitations:1) qubit count and 2) error vulnerability. Although quantum error correction methods exist, they are not applicable to the current size of computers, requiring thousands of qubits, while current […]

DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks

Quantum routing plays a key role in the development of the next-generation network system. In particular, an entangled routing path can be constructed with the help of quantum entanglement and swapping among particles (e.g., photons) associated with nodes in the network. From another side of computing, machine learning has achieved numerous breakthrough successes in various […]

A Connection-Oriented Entanglement Distribution Design in Quantum Networks

Quantum networks create a completely new way for communication, and the most important function of a quantum network is to generate long-distance quantum entanglement to serve a number of quantum applications. As the scale of the network expands, in order to establish end-to-end entanglement between two remote nodes, entangled pairs need to be generated and […]

A Connection-Oriented Entanglement Distribution Design in Quantum Networks

Quantum networks create a completely new way for communication, and the most important function of a quantum network is to generate long-distance quantum entanglement to serve a number of quantum applications. As the scale of the network expands, in order to establish end-to-end entanglement between two remote nodes, entangled pairs need to be generated and […]

DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks

Quantum routing plays a key role in the development of the next-generation network system. In particular, an entangled routing path can be constructed with the help of quantum entanglement and swapping among particles (e.g., photons) associated with nodes in the network. From another side of computing, machine learning has achieved numerous breakthrough successes in various […]

Request Scheduling in Quantum Networks

Quantumnetworking is emerging as a new research area to explore the opportunities of interconnecting quantum systems through end-to-end entanglement of qubits at geographical distance via quantum repeaters. A promising architecture has been proposed in the literature that decouples entanglement between adjacent quantum nodes/repeaters from establishing end-to-end paths by adopting a time slotted approach. Within this […]