Simulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS)

Quantum dots (QDs) must be tuned precisely to provide a suitable basis for quantum computation. A scalable platform for quantum computing can only be achieved by fully automating the tuning process. One crucial step is to trap the appropriate number of electrons in the QDs, typically accomplished by analyzing charge stability diagrams (CSDs). Training and […]

Probing Quantum Telecloning on Superconducting Quantum Processors

Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on […]

Simulating Quantum Field Theories on Gate-Based Quantum Computers

We implement a simulation of a quantum field theory in 1+1 space–time dimensions on a gate-based quantum computer using the light-front formulation of the theory. The nonperturbative simulation of the Yukawa model field theory is verified on IBM’s simulator and is also demonstrated on a small-scale IBM circuit-based quantum processor, on the cloud, using IBM […]

Quantum Fuzzy Inference Engine for Particle Accelerator Control

Recently, quantum computing has been proven as an ideal theory for the design of fuzzy inference engines, thanks to its capability to efficiently solve the rule explosion problem. In this scenario, a quantum fuzzy inference engine (QFIE) was proposed as a quantum algorithm able to generate an exponential computational advantage over conventional fuzzy inference engines. […]

Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment

This article examines the current status of quantum computing (QC) in Earth observation and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and QC. We then assess […]

Exploiting the Quantum Advantage for Satellite Image Processing: Review and Assessment

This article examines the current status of quantum computing (QC) in Earth observation and satellite imagery. We analyze the potential limitations and applications of quantum learning models when dealing with satellite data, considering the persistent challenges of profiting from quantum advantage and finding the optimal sharing between high-performance computing (HPC) and QC. We then assess […]

Improving Urban Traffic Mobility via a Versatile Quantum Annealing Model

The growth of cities and the resulting increase in vehicular traffic pose significant challenges to the environment and citizens’ quality of life. To address these challenges, a new algorithm has been proposed that leverages the quantum annealing paradigm and D-wave’s machines to optimize the control of traffic lights in cities. The algorithm considers traffic information […]

Teaching Quantum Computing to High-School-Aged Youth: A Hands-On Approach

Quantum computing is aninterdisciplinary field that lies at the intersection of mathematics, quantum physics, and computer science, and finds applications in areas including optimization, machine learning, and simulation of chemical, physical, and biological systems. It has the potential to help solve problems that so far have no satisfying method solving them, and to provide significant […]

Hash Function Based on Controlled Alternate Quantum Walks With Memory (September 2021)

We propose a Quantum inspired Hash Function using controlled alternate quantum walks with Memory on cycles (QHFM), where the j th message bit decides whether to run quantum walk with one-step memory or to run quantum walk with two-step memory at the j th time step, and the hash value is calculated from the resulting probability distribution of the […]

Topological-Graph Dependencies and Scaling Properties of a Heuristic Qubit-Assignment Algorithm

The qubit-mapping problem aims to assign and route qubits of a quantum circuit onto an noisy intermediate-scale quantum (NISQ) device in an optimized fashion, with respect to some cost function. Finding an optimal solution to this problem is known to scale exponentially in computational complexity; as such, it is imperative to investigate scalable qubit-mapping solutions […]