Modeling and Experimental Validation of the Intrinsic SNR in Spin Qubit Gate-Based Readout and Its Impacts on Readout Electronics

In semiconductor spin quantum bits (qubits), the radio-frequency (RF) gate-based readout is a promising solution for future large-scale integration, as it allows for a fast, frequency-multiplexed readout architecture, enabling multiple qubits to be read out simultaneously. This article introduces a theoretical framework to evaluate the effect of various parameters, such as the readout probe power, […]

Simulating Quantum Field Theories on Gate-Based Quantum Computers

We implement a simulation of a quantum field theory in 1+1 space–time dimensions on a gate-based quantum computer using the light-front formulation of the theory. The nonperturbative simulation of the Yukawa model field theory is verified on IBM’s simulator and is also demonstrated on a small-scale IBM circuit-based quantum processor, on the cloud, using IBM […]

Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems

In this article, we propose a postprocessing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-based quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in […]

Postprocessing Variationally Scheduled Quantum Algorithm for Constrained Combinatorial Optimization Problems

In this article, we propose a postprocessing variationally scheduled quantum algorithm (pVSQA) for solving constrained combinatorial optimization problems (COPs). COPs are typically transformed into ground-state search problems of the Ising model on a quantum annealer or gate-based quantum device. Variational methods are used to find an optimal schedule function that leads to high-quality solutions in […]

Quantum Fuzzy Inference Engine for Particle Accelerator Control

Recently, quantum computing has been proven as an ideal theory for the design of fuzzy inference engines, thanks to its capability to efficiently solve the rule explosion problem. In this scenario, a quantum fuzzy inference engine (QFIE) was proposed as a quantum algorithm able to generate an exponential computational advantage over conventional fuzzy inference engines. […]

Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks

Quanvolutional neural networks (QNNs) have been successful in image classification, exploiting inherent quantum capabilities to improve performance of traditional convolution. Unfortunately, the qubit’s reliability can be a significant issue for QNNs inference, since its logical state can be altered by both intrinsic noise and by the interaction with natural radiation. In this article, we aim […]

Understanding Logical-Shift Error Propagation in Quanvolutional Neural Networks

Quanvolutional Neural Networks (QNNs) have been successful in image classification, exploiting inherent quantum capabilities to improve performance of the traditional convolution. Unfortunately, the qubit’s reliability can be a significant issue for QNNs inference, since its logical state can be altered by both intrinsic noise and by the interaction with natural radiation. In this paper we […]

A Stable Hash Function Based on Parity-Dependent Quantum Walks With Memory (August 2023)

In this article, we develop a generic controlled alternate quantum walk model by combining parity-dependent quantum walks with distinct arbitrary memory lengths and propose a hash function (called QHFM-P) based on this model. The statistical properties of the proposed scheme are stable with respect to the coin parameters of the underlying controlled quantum walks, and […]

A Quantum-Classical Collaborative Training Architecture Based on Quantum State Fidelity

Recent advancements have highlighted the limitations of current quantum systems, particularly the restricted number of qubits available on near-term quantum devices. This constraint greatly inhibits the range of applications that can leverage quantum computers. Moreover, as the available qubits increase, the computational complexity grows exponentially, posing additional challenges. Consequently, there is an urgent need to […]

Quantum Computation via Multiport Discretized Quantum Fourier Optical Processors

The light’s image is the primary source of information carrier in nature. Indeed, a single photon’s image possesses a vast information capacity that can be harnessed for quantum information processing. Our scheme for implementing quantum information processing on a discretized photon wavefront via universal multiport processors employs a class of quantum Fourier optical systems composed […]