Network Anomaly Detection Using Quantum Neural Networks on Noisy Quantum Computers

The escalating threat and impact of network-based attacks necessitate innovative intrusion detection systems. Machine learning has shown promise, with recent strides in quantum machine learning offering new avenues. However, the potential of quantum computing is tempered by challenges in current noisy intermediate-scale quantum era machines. In this article, we explore quantum neural networks (QNNs) for […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Relation Between Quantum Advantage in Supervised Learning and Quantum Computational Advantage

The widespread use of machine learning has raised the question of quantum supremacy for supervised learning as compared to quantum computational advantage. In fact, a recent work shows that computational and learning advantages are, in general, not equivalent, i.e., the additional information provided by a training set can reduce the hardness of some problems. This […]

Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning

Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general […]

Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning

Quantum machine learning is a promising programming paradigm for the optimization of quantum algorithms in the current era of noisy intermediate-scale quantum computers. A fundamental challenge in quantum machine learning is generalization, as the designer targets performance under testing conditions while having access only to limited training data. Existing generalization analyses, while identifying important general […]

Bayesian Optimization for QAOA

The quantum approximate optimization algorithm (QAOA) adopts a hybrid quantum-classical approach to find approximate solutions to variational optimization problems. In fact, it relies on a classical subroutine to optimize the parameters of a quantum circuit. In this article, we present a Bayesian optimization procedure to fulfill this optimization task, and we investigate its performance in […]

Hybrid Quantum–Classical Generative Adversarial Network for High-Resolution Image Generation

Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in problems, such as classification and identification tasks. A subclass of QML methods is quantum generative adversarial networks (QGANs), which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation […]

Quantum Kernels for Real-World Predictions Based on Electronic Health Records

Research on near-term quantum machine learning has explored how classical machine learning algorithms endowed with access to quantum kernels (similarity measures) can outperform their purely classical counterparts. Although theoretical work has shown a provable advantage on synthetic data sets, no work done to date has studied empirically whether the quantum advantage is attainable and with […]

A Distributed Learning Scheme for Variational Quantum Algorithms

Variational quantum algorithms (VQAs) are prime contenders to gain computational advantages over classical algorithms using near-term quantum machines. As such, many endeavors have been made to accelerate the optimization of modern VQAs in past years. To further improve the capability of VQAs, here, we propose a quantum distributed optimization scheme (dubbed as QUDIO), whose back […]