Bayesian Optimization for QAOA

The quantum approximate optimization algorithm (QAOA) adopts a hybrid quantum-classical approach to find approximate solutions to variational optimization problems. In fact, it relies on a classical subroutine to optimize the parameters of a quantum circuit. In this article, we present a Bayesian optimization procedure to fulfill this optimization task, and we investigate its performance in […]

Machine-Learning-Based Parameter Estimation of Gaussian Quantum States

In this article, we propose a machine-learning framework for parameter estimation of single-mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement and squeezing parameter estimation, this is achieved by introducing expectation–maximization (EM)-based algorithms, while for phase parameter estimation, an empirical Bayes method […]

Machine-Learning-Based Parameter Estimation of Gaussian Quantum States

In this article, we propose a machine-learning framework for parameter estimation of single-mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement and squeezing parameter estimation, this is achieved by introducing expectation–maximization (EM)-based algorithms, while for phase parameter estimation, an empirical Bayes method […]