Machine-Learning-Based Parameter Estimation of Gaussian Quantum States

In this article, we propose a machine-learning framework for parameter estimation of single-mode Gaussian quantum states. Under a Bayesian framework, our approach estimates parameters of suitable prior distributions from measured data. For phase-space displacement and squeezing parameter estimation, this is achieved by introducing expectation–maximization (EM)-based algorithms, while for phase parameter estimation, an empirical Bayes method […]

New Single-Preparation Methods for Unsupervised Quantum Machine Learning Problems

The term “machine learning” especially refers to algorithms that derive mappings, i.e., input–output transforms, by using numerical data that provide information about considered transforms. These transforms appear in many problems related to classification/clustering, regression, system identification, system inversion, and input signal restoration/separation. We here analyze the connections between all these problems in the classical and […]