Scalable Full-Stack Benchmarks for Quantum Computers

Quantum processors are now able to run quantum circuits that are infeasible to simulate classically, creating a need for benchmarks that assess a quantum processor’s rate of errors when running these circuits. Here, we introduce a general technique for creating efficient benchmarks from any set of quantum computations, specified by unitary circuits. Our benchmarks assess […]

Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design

While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum […]

Quantum Vulnerability Analysis to Guide Robust Quantum Computing System Design

While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum […]

Testing Platform-Independent Quantum Error Mitigation on Noisy Quantum Computers

We apply quantum error mitigation (QEM) techniques to a variety of benchmark problems and quantum computers to evaluate the performance of QEM in practice. To do so, we define an empirically motivated, resource-normalized metric of the improvement of error mitigation, which we call the improvement factor, and calculate this metric for each experiment we perform. […]

Quantum Volume in Practice: What Users Can Expect From NISQ Devices

Quantum volume (QV) has become the de-facto standard benchmark to quantify the capability of noisy intermediate-scale quantum (NISQ) devices. While QV values are often reported by NISQ providers for their systems, we perform our own series of QV calculations on 24 NISQ devices currently offered by IBM Q, IonQ, Rigetti, Oxford Quantum Circuits, and Quantinuum […]

Practical Quantum K-Means Clustering: Performance Analysis and Applications in Energy Grid Classification

In this work, we aim to solve a practical use-case of unsupervised clustering that has applications in predictive maintenance in the energy operations sector using quantum computers. Using only cloud access to quantum computers, we complete thorough performance analysis of what some current quantum computing systems are capable of for practical applications involving nontrivial mid-to-high-dimensional […]

Quantum Volume in Practice: What Users Can Expect From NISQ Devices

Quantum volume (QV) has become the de-facto standard benchmark to quantify the capability of noisy intermediate-scale quantum (NISQ) devices. While QV values are often reported by NISQ providers for their systems, we perform our own series of QV calculations on 24 NISQ devices currently offered by IBM Q, IonQ, Rigetti, Oxford Quantum Circuits, and Quantinuum […]

Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way

Existing protocols for benchmarking current quantum coprocessors fail to meet the usual standards for assessing the performance of high-performance-computing platforms. After a synthetic review of these protocols—whether at the gate, circuit, or application level—we introduce a new benchmark, dubbed Atos Q-score, which is application-centric, hardware-agnostic, and scalable to quantum advantage processor sizes and beyond. The […]

Benchmarking Hamiltonian Noise in the D-Wave Quantum Annealer

Various sources of noise limit the performance of quantum computers by altering qubit states in an uncontrolled manner throughout computations and reducing their coherence time. In quantum annealers, this noise introduces additional fluctuations to the parameters defining the original problem Hamiltonian, such that they find the ground states of problems perturbed from those originally programmed. […]

Experimental Characterization, Modeling, and Analysis of Crosstalk in a Quantum Computer

In this article, we present the experimental characterization of crosstalk in quantum information processor using idle tomography and simultaneous randomized benchmarking. We quantify both “quantum” and “classical” crosstalk in the device and analyze quantum circuits considering crosstalk. We show that simulation considering only gate-error deviates from experimental results up to 27%, whereas simulation considering both […]