Experimental Characterization, Modeling, and Analysis of Crosstalk in a Quantum Computer

In this article, we present the experimental characterization of crosstalk in quantum information processor using idle tomography and simultaneous randomized benchmarking. We quantify both “quantum” and “classical” crosstalk in the device and analyze quantum circuits considering crosstalk. We show that simulation considering only gate-error deviates from experimental results up to 27%, whereas simulation considering both […]

Solving the Network Shortest Path Problem on a Quantum Annealer

This article addresses the formulation for implementing a single source, single-destination shortest path algorithm on a quantum annealing computer. Three distinct approaches are presented. In all the three cases, the shortest path problem is formulated as a quadratic unconstrained binary optimization problem amenable to quantum annealing. The first implementation builds on existing quantum annealing solutions […]

Programmable Quantum Networked Microgrids

Quantum key distribution (QKD) provides a potent solution to securely distribute keys for two parties. However, QKD itself is vulnerable to denial of service (DoS) attacks. A flexible and resilient QKD-enabled networked microgrids (NMs) architecture is needed but does not yet exist. In this article, we present a programmable quantum NMs (PQNMs) architecture. It is […]

High-Dimensional Semiquantum Cryptography

A semiquantum key distribution (SQKD) protocol allows two users, one of whom is restricted in their quantum capabilities to being nearly classical, to establish a shared secret key, secure against an all-powerful adversary. The study of such protocols helps to answer the fundamental question of “how quantum” must a protocol be to gain an advantage […]

Subdivided Phase Oracle for NISQ Search Algorithms

Because noisy intermediate-scale quantum (NISQ) machines accumulate errors quickly, we need new approaches to designing NISQ-aware algorithms and assessing their performance. Algorithms with characteristics that appear less desirable under ideal circumstances, such as lower success probability, may in fact outperform their ideal counterparts on existing hardware. We propose an adaptation of Grover’s algorithm, subdividing the […]

Theory of Quantum Computation With Magnetic Clusters

We propose a complete, quantitative quantum computing system that satisfies the five DiVincenzo criteria. The model is based on magnetic clusters with uniaxial anisotropy, where two-state qubits are formed utilizing the two lowest lying states of an anisotropic potential energy. We outline the quantum dynamics required by quantum computing for single-qubit structures, and then define […]

Improved Gilbert–Varshamov Bound for Entanglement-Assisted Asymmetric Quantum Error Correction by Symplectic Orthogonality

We propose and prove an existential theorem for entanglement-assisted asymmetric quantum error correction. Then, we demonstrate its superiority over the conventional one. For more about this transaction see link below.  https://ieeexplore.ieee.org/document/9076251

Quantum Computer Architecture Toward Full-Stack Quantum Accelerators

This article presents the definition and implementation of a quantum computer architecture to enable creating a new computational device-a quantum computer as an accelerator. A key question addressed is what such a quantum computer is and how it relates to the classical processor that controls the entire execution process. In this article, we present explicitly […]

Enhancing a Near-Term Quantum Accelerator’s Instruction Set Architecture for Materials Science Applications

Quantum computers with tens to hundreds of noisy qubits are being developed today. To be useful for real-world applications, we believe that these near-term systems cannot simply be scaled-down non-error-corrected versions of future fault-tolerant large-scale quantum computers. These near-term systems require specific architecture and design attributes to realize their full potential. To efficiently execute an […]

Decoding Quantum Error Correction Codes With Local Variation

In this article, we investigate the role of local information in the decoding of the repetition and surface error correction codes for the protection of quantum states. Our key result is an improvement in resource efficiency when local information is taken into account during the decoding process: the code distance associated with a given logical […]