Simultaneous Estimation of Parameters and the State of an Optical Parametric Oscillator System

In this article, we consider the filtering problem of an optical parametric oscillator (OPO). The OPO pump power may fluctuate due to environmental disturbances, resulting in uncertainty in the system modeling. Thus, both the state and the unknown parameter may need to be estimated simultaneously. We formulate this problem using a state-space representation of the […]

Stable Turnkey Laser System for a Yb/Ba Trapped-Ion Quantum Computer

This work presents a stable and reliable turnkey continuous-wave laser system for a Yb/Ba multispecies trapped-ion quantum computer. The compact and rack-mountable optics system exhibits high robustness, operating over a year without realignment, regardless of temperature changes in the laboratory. The overall optical system is divided into a few isolated modules interconnected by optical fibers […]

A High-Resolution Single-Photon Arrival-Time Measurement With Self-Antithetic Variance Reduction in Quantum Applications: Theoretical Analysis and Performance Estimation

An almost all-digital time-to-digital converter (TDC) possessing subpicosecond resolutions, scalable dynamic ranges, high linearity, high noise immunity, and moderate conversion rates can be achieved by a random sampling-and-averaging (RSA) approach with the self-antithetic variance reduction (SAVR) technique for time-correlated single-photon counting (TCSPC) quantum measurements. This article presents detailed theoretical analysis and behavior-model verifications of the […]

Versatile and Concurrent FPGA-Based Architecture for Practical Quantum Communication Systems

This article presents a hardware and software architecture, which can be used in those systems that implement practical quantum key distribution (QKD) and quantum random-number generation (QRNG) schemes. This architecture fully exploits the capability of a System on a Chip (SoC), which comprehends both a field-programmable gate array (FPGA) and a dual-core CPU unit. By […]

Timing Constraints Imposed by Classical Digital Control Systems on Photonic Implementations of Measurement-Based Quantum Computing

Most of the architectural research on photonic implementations of measurement-based quantum computing (MBQC) has focused on the quantum resources involved in the problem with the implicit assumption that these will provide the main constraints on system scaling. However, the “flying-qubit” architecture of photonic MBQC requires specific timing constraints that need to be met by the […]

Development of an Undergraduate Quantum Engineering Degree

Quantum computing, communications, sensing, and simulations are radically transformative technologies, with great potential to impact industries and economies. Worldwide, national governments, industries, and universities are moving to create a new class of workforce—the Quantum Engineers. Demand for such engineers is predicted to be in the tens of thousands within a five-year timescale, far exceeding the […]