Formulating and Solving Routing Problems on Quantum Computers

The determination of vehicle routes fulfilling connectivity, time, and operational constraints is a well-studied combinatorial optimization problem. The NP-hard complexity of vehicle routing problems has fostered the adoption of tailored exact approaches, matheuristics, and metaheuristics on classical computing devices. The ongoing evolution of quantum computing hardware and the recent advances of quantum algorithms (i.e., VQE, […]

Finding Small and Large k-Clique Instances on a Quantum Computer

Algorithms for triangle finding, the smallest nontrivial instance of the k -clique problem, have been proposed for quantum computers. Still, those algorithms assume the use of fixed access time quantum RAM. In this article, we present a practical gate-based approach to both the triangle-finding problem and its NP-hard k -clique generalization. We examine both constant factors for near-term implementation […]

Multiblock ADMM Heuristics for Mixed-Binary Optimization on Classical and Quantum Computers

Solving combinatorial optimization problems on current noisy quantum devices is currently being advocated for (and restricted to) binary polynomial optimization with equality constraints via quantum heuristic approaches. This is achieved using, for example, the variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA). In this article, we present a decomposition-based approach to extend […]

Quantum Computing for Finance: State-of-the-Art and Future Prospects

This article outlines our point of view regarding the applicability, state-of-the-art, and potential of quantum computing for problems in finance. We provide an introduction to quantum computing as well as a survey on problem classes in finance that are computationally challenging classically and for which quantum computing algorithms are promising. In the main part, we […]